Strong-coupling phases of planar $\mathcal{N}=2^*$ super-Yang–Mills
Teoretičeskaâ i matematičeskaâ fizika, Tome 181 (2014) no. 3, pp. 464-474 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The $\mathcal{N}=2^*$ theory (mass deformation of the $\mathcal{N}=4$ super-Yang–Mills theory) undergoes an infinite number of quantum phase transitions in the large-$N$ limit. The phase structure and critical behavior can be analyzed using supersymmetric localization, which reduces the problem to an effective matrix model. We study this model in the strong-coupling phase.
Keywords: supersymmetry, matrix model, $1/N$-expansion.
@article{TMF_2014_181_3_a3,
     author = {K. L. Zarembo},
     title = {Strong-coupling phases of planar $\mathcal{N}=2^*$ {super-Yang{\textendash}Mills}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {464--474},
     year = {2014},
     volume = {181},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2014_181_3_a3/}
}
TY  - JOUR
AU  - K. L. Zarembo
TI  - Strong-coupling phases of planar $\mathcal{N}=2^*$ super-Yang–Mills
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2014
SP  - 464
EP  - 474
VL  - 181
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2014_181_3_a3/
LA  - ru
ID  - TMF_2014_181_3_a3
ER  - 
%0 Journal Article
%A K. L. Zarembo
%T Strong-coupling phases of planar $\mathcal{N}=2^*$ super-Yang–Mills
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2014
%P 464-474
%V 181
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2014_181_3_a3/
%G ru
%F TMF_2014_181_3_a3
K. L. Zarembo. Strong-coupling phases of planar $\mathcal{N}=2^*$ super-Yang–Mills. Teoretičeskaâ i matematičeskaâ fizika, Tome 181 (2014) no. 3, pp. 464-474. http://geodesic.mathdoc.fr/item/TMF_2014_181_3_a3/

[1] V. Pestun, Commun. Math. Phys., 313:1 (2012), 71–129, arXiv: 0712.2824 | DOI | MR | Zbl

[2] J. K. Erickson, G. W. Semenoff, K. Zarembo, Nucl. Phys. B, 582:1 (2000), 155–175, arXiv: hep-th/0003055 | DOI | MR | Zbl

[3] N. Drukker, D. J. Gross, J. Math. Phys., 42:7 (2001), 2896–2914, arXiv: hep-th/0010274 | DOI | MR | Zbl

[4] J. G. Russo, K. Zarembo, JHEP, 04 (2013), 065, 25 pp., arXiv: 1302.6968 | DOI | MR

[5] J. G. Russo, K. Zarembo, JHEP, 11 (2013), 130, 51 pp., arXiv: 1309.1004 | DOI | MR | Zbl

[6] A. Buchel, J. G. Russo, K. Zarembo, JHEP, 03 (2013), 062, 12 pp., arXiv: 1301.1597 | DOI

[7] K. Pilch, N. P. Warner, Nucl. Phys. B, 594:1–2 (2001), 209–228, arXiv: hep-th/0004063 | DOI | MR | Zbl

[8] N. Bobev, H. Elvang, D. Z. Freedman, S. S. Pufu, Holography for $\mathcal{N}=2^*$ on $S^4$, arXiv: 1311.1508

[9] J. G. Russo, K. Zarembo, Localization at large $N$, arXiv: 1312.1214

[10] D. J. Gross, E. Witten, Phys. Rev. D, 21:2 (1980), 446–453 | DOI

[11] S. R. Wadia, A study of $U(N)$ lattice gauge theory in $2$-dimensions, arXiv: 1212.2906

[12] J. Hoppe, not published

[13] V. A. Kazakov, I. K. Kostov, N. A. Nekrasov, Nucl. Phys. B, 557:3 (1999), 413–442, arXiv: hep-th/9810035 | DOI | MR | Zbl

[14] A. Kapustin, B. Willett, I. Yaakov, JHEP, 03 (2010), 089, 29 pp., arXiv: 0909.4559 | DOI | MR

[15] L. Anderson, K. Zarembo, Quantum phase transitions in mass-deformed ABJM matrix model, arXiv: 1406.3366

[16] J. G. Russo, JHEP, 06 (2012), 038, 25 pp., arXiv: 1203.5061 | DOI | MR

[17] J. G. Russo, K. Zarembo, JHEP, 10 (2012), 082, 25 pp., arXiv: 1207.3806 | DOI | MR

[18] M. Billó, M. Frau, F. Fucito, A. Lerda, J. Morales, R. Poghossian, D. Ricci Pacifici, “Modular anomaly equations in $N=2^*$ theories and their large-$N$ limit”, arXiv: 1406.7255

[19] A. Buchel, A. W. Peet, J. Polchinski, Phys. Rev. D, 63 (2001), 044009, 11 pp., arXiv: hep-th/0008076 | DOI | MR

[20] N. J. Evans, C. V. Johnson, M. Petrini, JHEP, 10 (2000), 022, 21 pp., arXiv: hep-th/0008081 | DOI | Zbl