Gauge-noninvariant higher-spin currents in four-dimensional Minkowski space
Teoretičeskaâ i matematičeskaâ fizika, Tome 181 (2014) no. 3, pp. 449-463 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We find the conserved currents of any spin $t>0$ constructed from massless gauge fields of any integer spin $s\ge t$ in four-dimensional Minkowski space. In particular, we construct the stress–energy tensor for a field of any higher spin. Analogously to the spin-two stress (pseudo)tensor, the currents we consider are not gauge invariant, but we show that they generate gauge-invariant charges. In addition to the expected even-parity higher-spin currents, we find unexpected odd-parity currents that generate fewer symmetries than the even currents. We argue that these odd currents most likely do not admit a consistent AdS deformation.
Keywords: higher-spin theory, conservation law.
@article{TMF_2014_181_3_a2,
     author = {M. A. Vasiliev and P. A. Smirnov},
     title = {Gauge-noninvariant higher-spin currents in four-dimensional {Minkowski} space},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {449--463},
     year = {2014},
     volume = {181},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2014_181_3_a2/}
}
TY  - JOUR
AU  - M. A. Vasiliev
AU  - P. A. Smirnov
TI  - Gauge-noninvariant higher-spin currents in four-dimensional Minkowski space
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2014
SP  - 449
EP  - 463
VL  - 181
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2014_181_3_a2/
LA  - ru
ID  - TMF_2014_181_3_a2
ER  - 
%0 Journal Article
%A M. A. Vasiliev
%A P. A. Smirnov
%T Gauge-noninvariant higher-spin currents in four-dimensional Minkowski space
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2014
%P 449-463
%V 181
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2014_181_3_a2/
%G ru
%F TMF_2014_181_3_a2
M. A. Vasiliev; P. A. Smirnov. Gauge-noninvariant higher-spin currents in four-dimensional Minkowski space. Teoretičeskaâ i matematičeskaâ fizika, Tome 181 (2014) no. 3, pp. 449-463. http://geodesic.mathdoc.fr/item/TMF_2014_181_3_a2/

[1] A. A. Slavnov, TMF, 10:2 (1972), 153–161 | MR

[2] A. A. Slavnov, K. V. Stepanyants, TMF, 135:2 (2003), 265–279, arXiv: hep-th/0208006 | DOI | DOI | Zbl

[3] F. A. Berends, G. J. H. Burgers, H. Van Dam, Nucl. Phys. B, 271:2 (1986), 429–441 | DOI | MR

[4] M. A. Vasiliev, “Higher spin gauge theories: star-product and AdS space”, The Many Faces of the Superworld, ed. M. A. Shifman, World Sci., Singapore, 2000, 533–610, arXiv: hep-th/9910096 | DOI | MR | Zbl

[5] D. Anselmi, Class. Quantum Grav., 17:6 (2000), 1383–1400, arXiv: hep-th/9906167 | DOI | MR | Zbl

[6] S. E. Konstein, M. A. Vasiliev, V. N. Zaikin, JHEP, 12 (2000), 018, 12 pp., arXiv: hep-th/0010239 | DOI | MR | Zbl

[7] S. Deser, A. Waldron, Stress and strain: $T^{\mu \nu}$ of higher spin gauge fields, arXiv: hep-th/0403059

[8] M. A. Vasilev, O. A. Gelfond, E. D. Skvortsov, TMF, 154:2 (2008), 344–353 | DOI | DOI | MR | Zbl

[9] X. Bekaert, E. Meunier, JHEP, 11 (2010), 116, 31 pp., arXiv: 1007.4384 | DOI | MR | Zbl

[10] D. S. Kaparulin, S. L. Lyakhovich, A. A. Sharapov, SIGMA, 8 (2012), 021, 18 pp., arXiv: 1112.1860 | DOI | MR | Zbl

[11] L. D. Landau, E. M. Lifshits, Teoreticheskaya fizika, v. 2, Teoriya polya, Nauka, M., 1988 | MR | Zbl

[12] M. A. Vasiliev, Nucl. Phys. B, 862:2 (2012), 341–408, arXiv: 1108.5921 | DOI | MR | Zbl

[13] E. Joung, M. Taronna, Cubic-interaction-induced deformations of higher-spin symmetries, arXiv: 1311.0242

[14] V. E. Didenko, M. A. Vasiliev, Phys. Lett. B, 682:3 (2009), 305–315, arXiv: ; Erratum 722:4–5 (2013), 389 0906.3898 | DOI | MR | DOI

[15] C. Iazeolla, P. Sundell, JHEP, 12 (2011), 084, 81 pp., arXiv: 1107.1217 | DOI | MR | Zbl

[16] C. Fronsdal, Phys. Rev. D, 18:10 (1978), 3624–3629 | DOI

[17] M. A. Vasilev, YaF, 32 (1980), 855–861 | MR

[18] M. A. Vasiliev, Fortsch. Phys., 35:11 (1987), 741–770 | DOI | MR

[19] R. R. Metsaev, Phys. Lett. B, 354:1–2 (1995), 78–84 | DOI | MR

[20] L. Brink, R. R. Metsaev, M. A. Vasiliev, Nucl. Phys. B, 586:1 (2000), 183–205, arXiv: hep-th/0005136 | DOI | MR | Zbl