Keywords: Weyl correspondence, Wick symbol, anti-Wick symbol, star-product algebra, noncommutative quantum field theory.
@article{TMF_2014_181_3_a10,
author = {M. A. Soloviev},
title = {Star products on symplectic vector spaces: {Convergence,} representations, and extensions},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {568--596},
year = {2014},
volume = {181},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2014_181_3_a10/}
}
TY - JOUR AU - M. A. Soloviev TI - Star products on symplectic vector spaces: Convergence, representations, and extensions JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2014 SP - 568 EP - 596 VL - 181 IS - 3 UR - http://geodesic.mathdoc.fr/item/TMF_2014_181_3_a10/ LA - ru ID - TMF_2014_181_3_a10 ER -
M. A. Soloviev. Star products on symplectic vector spaces: Convergence, representations, and extensions. Teoretičeskaâ i matematičeskaâ fizika, Tome 181 (2014) no. 3, pp. 568-596. http://geodesic.mathdoc.fr/item/TMF_2014_181_3_a10/
[1] G. Dito, D. Sternheimer, “Deformation quantization: genesis, developments and metamorphoses”, Deformation Quantization (Strasbourg, France, May 31 – June 2, 2001), IRMA Lectures in Mathematics and Theoretical Physics, 1, ed. G. Halbout, De Gruyter, Berlin, 2001, 9–54, arXiv: math/0201168 | MR | Zbl
[2] S. T. Ali, M. Engliš, Rev. Math. Phys., 17:4 (2005), 391–490, arXiv: math-ph/0405065 | DOI | MR | Zbl
[3] I. Todorov, Bulg. J. Phys., 39:2 (2012), 107–149, arXiv: 1206.3116 | MR
[4] C. K. Zachos, D. B. Fairlie, T. L. Curtright (eds.), Quantum Mechanics in Phase Space, World Scientific Series in 20th Century Physics, 34, World Sci., Singapore, 2005 | DOI | MR | Zbl
[5] R. J. Szabo, Phys. Rep., 378:4 (2003), 207–299, arXiv: hep-th/0109162 | DOI | MR | Zbl
[6] L. Álvarez-Gaumé, M. A. Vázquez-Mozo, Nucl. Phys. B, 668:1–2 (2003), 293–321, arXiv: hep-th/0305093 | DOI | MR | Zbl
[7] N. N. Bogolyubov, A. A. Logunov, A. I. Oksak, I. T. Todorov, Obschie printsipy kvantovoi teorii polya, Nauka, M., 1987 | MR | MR | Zbl
[8] S. Galluccio, F. Lizzi, P. Vitale, Phys. Rev. D, 78:8 (2008), 085007, 14 pp., arXiv: 0810.2095 | DOI | MR
[9] A. P. Balachandran, A. Ibort, G. Marmo, M. Martone, Phys. Rev. D, 81:8 (2010), 085017, 8 pp., arXiv: 0910.4779 | DOI | MR
[10] P. Basu, B. Chakraborty, F. G. Scholtz, J. Phys. A: Math. Theor., 44:28 (2011), 285204, 11 pp., arXiv: 1101.2495 | DOI | MR | Zbl
[11] M. A. Soloviev, J. Phys. A: Math. Theor., 40:48 (2007), 14593–14604, arXiv: 0708.1151 | DOI | MR | Zbl
[12] M. A. Solovev, TMF, 163:3 (2010), 413–429, arXiv: 1012.3536 | DOI | DOI | MR
[13] M. A. Soloviev, Phys. Rev. D, 89:10 (2014), 105020, 11 pp., arXiv: 1312.5656 | DOI
[14] H. Grosse, G. Lechner, JHEP, 11 (2007), 012, 26 pp., arXiv: 0706.3992 | DOI | MR | Zbl
[15] H. Grosse, G. Lechner, JHEP, 09 (2008), 131, 29 pp., arXiv: 0808.3459 | DOI | MR
[16] J. M. Gracia-Bondia, J. C. Várilly, J. Math. Phys., 29:4 (1988), 869–879 | DOI | MR | Zbl
[17] J. M. Gracia-Bondia, F. Lizzi, G. Marmo, P. Vitale, JHEP, 04 (2002), 026, 36 pp., arXiv: hep-th/0112092 | DOI
[18] V. Gayral, J. M. Gracia-Bondia, B. Iochum, T. Schücker, J. C. Várilly, Commun. Math. Phys., 246:3 (2004), 569–623, arXiv: hep-th/0307241 | DOI | MR | Zbl
[19] M. A. Soloviev, J. Math. Phys., 52:6 (2011), 063502, 18 pp., arXiv: 1012.0669 | DOI | MR | Zbl
[20] M. A. Solovev, TMF, 172:1 (2012), 9–27, arXiv: 1208.1838 | DOI | DOI
[21] M. A. Solovev, TMF, 173:1 (2012), 38–59 | DOI | DOI
[22] A. B. Hammou, M. Lagraa, M. M. Sheikh-Jabbari, Phys. Rev. D, 66:2 (2002), 025025, 11 pp., arXiv: hep-th/0110291 | DOI | MR
[23] K. K. Cahill, R. J. Glauber, Phys. Rev., 177:5 (1969), 1857–1881 | DOI
[24] J. M. Maillard, J. Geom. Phys., 3:2 (1986), 231–261 | DOI | MR | Zbl
[25] G. B. Folland, Harmonic Analysis in Phase Space, Annals of Mathematics Studies, 122, Princeton Univ. Press, Princeton, NJ, 1989 | MR | Zbl
[26] G. S. Agarwal, E. Wolf, Phys. Rev. D, 2:10 (1970), 2161–2186 | DOI | MR | Zbl
[27] M. Blaszak, Z. Domański, Ann. Phys., 327:2 (2012), 167–211, arXiv: 1009.0150 | DOI | MR | Zbl
[28] I. M. Gelfand, G. E. Shilov, Obobschennye funktsii, v. 2, Prostranstva osnovnykh i obobschennykh funktsii, Fizmatlit, M., 1958 | MR
[29] I. M. Gelfand, G. E. Shilov, Obobschennye funktsii, v. 3, Nekotorye voprosy teorii differentsialnykh uravnenii, Fizmatlit, M., 1958 | MR
[30] L. Khermander, Vvedenie v teoriyu funktsii neskolkikh kompleksnykh peremennykh, Mir, M., 1968 | MR
[31] H. Omori, Y. Maeda, N. Miyazaki, A. Yoshioka, “Deformation quantization of Fréchet–Poisson algebras: Convergence of the Moyal product”, Quantization, Deformations, and Symmetries (Dijon, France, September 5–8, 1999), v. 2, Mathematical Physics Studies, 22, eds. G. Dito, D. Sternheimer, Kluwer, Dordrecht, 2000, 233–245 | MR | Zbl
[32] H. Omori, Y. Maeda, N. Miyazaki, A. Yoshioka, “Non-formal deformation quantization of Fréchet–Poisson algebras: the Heisenberg and Lie algebra case”, Geometric and Topological Methods for Quantum Field Theory, Contemporary Mathematics, 434, eds. S. Paycha, B. Uribe, AMS, Providence, RI, 2007, 99–124 | DOI | MR
[33] M. A. Soloviev, J. Math. Phys., 54:7 (2013), 073517, 16 pp., arXiv: 1312.6571 | DOI | MR | Zbl
[34] S. Beiser, H. Römer, S. Waldmann, Commun. Math. Phys., 272:1 (2007), 25–52, arXiv: math.QA/0506605 | DOI | MR | Zbl
[35] Kh. Shefer, Topologicheskie vektornye prostranstva, Mir, M., 1971 | MR
[36] F. A. Berezin, M. A. Shubin, Uravnenie Shredingera, Izd-vo MGU, M., 1983 | MR | MR | Zbl
[37] M. Rid, B. Saimon, Metody sovremennoi matematicheskoi fiziki, v. 1, Funktsionalnyi analiz, Mir, M., 1977 | MR
[38] F. A. Berezin, Matem. sb., 86(128):4(12) (1971), 578–610 | DOI | MR | Zbl
[39] A. G. Athanassoulis, N. J. Mauser, T. Paul, J. Math. Pures Appl. (9), 91:3 (2009), 296–338, arXiv: 0804.0259 | DOI | MR | Zbl