Star products on symplectic vector spaces: Convergence, representations, and extensions
Teoretičeskaâ i matematičeskaâ fizika, Tome 181 (2014) no. 3, pp. 568-596 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We briefly survey the general scheme of deformation quantization on symplectic vector spaces and analyze its functional analytic aspects. We treat different star products in a unified way by systematically using an appropriate space of analytic test functions for which the series expansions of the star products in powers of the deformation parameter converge absolutely. The star products are extendable by continuity to larger functional classes. The uniqueness of the extension is guaranteed by suitable density theorems. We show that the maximal star product algebra with the absolute convergence property, consisting of entire functions of an order at most $2$ and minimal type, is nuclear. We obtain an integral representation for the star product corresponding to the Cahill–Glauber $s$-ordering, which connects the normal, symmetric, and antinormal orderings continuously as $s$ varies from $1$ to $-1$. We exactly characterize those extensions of the Wick and anti-Wick correspondences that are in line with the known extension of the Weyl correspondence to tempered distributions.
Mots-clés : deformation quantization
Keywords: Weyl correspondence, Wick symbol, anti-Wick symbol, star-product algebra, noncommutative quantum field theory.
@article{TMF_2014_181_3_a10,
     author = {M. A. Soloviev},
     title = {Star products on symplectic vector spaces: {Convergence,} representations, and extensions},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {568--596},
     year = {2014},
     volume = {181},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2014_181_3_a10/}
}
TY  - JOUR
AU  - M. A. Soloviev
TI  - Star products on symplectic vector spaces: Convergence, representations, and extensions
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2014
SP  - 568
EP  - 596
VL  - 181
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2014_181_3_a10/
LA  - ru
ID  - TMF_2014_181_3_a10
ER  - 
%0 Journal Article
%A M. A. Soloviev
%T Star products on symplectic vector spaces: Convergence, representations, and extensions
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2014
%P 568-596
%V 181
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2014_181_3_a10/
%G ru
%F TMF_2014_181_3_a10
M. A. Soloviev. Star products on symplectic vector spaces: Convergence, representations, and extensions. Teoretičeskaâ i matematičeskaâ fizika, Tome 181 (2014) no. 3, pp. 568-596. http://geodesic.mathdoc.fr/item/TMF_2014_181_3_a10/

[1] G. Dito, D. Sternheimer, “Deformation quantization: genesis, developments and metamorphoses”, Deformation Quantization (Strasbourg, France, May 31 – June 2, 2001), IRMA Lectures in Mathematics and Theoretical Physics, 1, ed. G. Halbout, De Gruyter, Berlin, 2001, 9–54, arXiv: math/0201168 | MR | Zbl

[2] S. T. Ali, M. Engliš, Rev. Math. Phys., 17:4 (2005), 391–490, arXiv: math-ph/0405065 | DOI | MR | Zbl

[3] I. Todorov, Bulg. J. Phys., 39:2 (2012), 107–149, arXiv: 1206.3116 | MR

[4] C. K. Zachos, D. B. Fairlie, T. L. Curtright (eds.), Quantum Mechanics in Phase Space, World Scientific Series in 20th Century Physics, 34, World Sci., Singapore, 2005 | DOI | MR | Zbl

[5] R. J. Szabo, Phys. Rep., 378:4 (2003), 207–299, arXiv: hep-th/0109162 | DOI | MR | Zbl

[6] L. Álvarez-Gaumé, M. A. Vázquez-Mozo, Nucl. Phys. B, 668:1–2 (2003), 293–321, arXiv: hep-th/0305093 | DOI | MR | Zbl

[7] N. N. Bogolyubov, A. A. Logunov, A. I. Oksak, I. T. Todorov, Obschie printsipy kvantovoi teorii polya, Nauka, M., 1987 | MR | MR | Zbl

[8] S. Galluccio, F. Lizzi, P. Vitale, Phys. Rev. D, 78:8 (2008), 085007, 14 pp., arXiv: 0810.2095 | DOI | MR

[9] A. P. Balachandran, A. Ibort, G. Marmo, M. Martone, Phys. Rev. D, 81:8 (2010), 085017, 8 pp., arXiv: 0910.4779 | DOI | MR

[10] P. Basu, B. Chakraborty, F. G. Scholtz, J. Phys. A: Math. Theor., 44:28 (2011), 285204, 11 pp., arXiv: 1101.2495 | DOI | MR | Zbl

[11] M. A. Soloviev, J. Phys. A: Math. Theor., 40:48 (2007), 14593–14604, arXiv: 0708.1151 | DOI | MR | Zbl

[12] M. A. Solovev, TMF, 163:3 (2010), 413–429, arXiv: 1012.3536 | DOI | DOI | MR

[13] M. A. Soloviev, Phys. Rev. D, 89:10 (2014), 105020, 11 pp., arXiv: 1312.5656 | DOI

[14] H. Grosse, G. Lechner, JHEP, 11 (2007), 012, 26 pp., arXiv: 0706.3992 | DOI | MR | Zbl

[15] H. Grosse, G. Lechner, JHEP, 09 (2008), 131, 29 pp., arXiv: 0808.3459 | DOI | MR

[16] J. M. Gracia-Bondia, J. C. Várilly, J. Math. Phys., 29:4 (1988), 869–879 | DOI | MR | Zbl

[17] J. M. Gracia-Bondia, F. Lizzi, G. Marmo, P. Vitale, JHEP, 04 (2002), 026, 36 pp., arXiv: hep-th/0112092 | DOI

[18] V. Gayral, J. M. Gracia-Bondia, B. Iochum, T. Schücker, J. C. Várilly, Commun. Math. Phys., 246:3 (2004), 569–623, arXiv: hep-th/0307241 | DOI | MR | Zbl

[19] M. A. Soloviev, J. Math. Phys., 52:6 (2011), 063502, 18 pp., arXiv: 1012.0669 | DOI | MR | Zbl

[20] M. A. Solovev, TMF, 172:1 (2012), 9–27, arXiv: 1208.1838 | DOI | DOI

[21] M. A. Solovev, TMF, 173:1 (2012), 38–59 | DOI | DOI

[22] A. B. Hammou, M. Lagraa, M. M. Sheikh-Jabbari, Phys. Rev. D, 66:2 (2002), 025025, 11 pp., arXiv: hep-th/0110291 | DOI | MR

[23] K. K. Cahill, R. J. Glauber, Phys. Rev., 177:5 (1969), 1857–1881 | DOI

[24] J. M. Maillard, J. Geom. Phys., 3:2 (1986), 231–261 | DOI | MR | Zbl

[25] G. B. Folland, Harmonic Analysis in Phase Space, Annals of Mathematics Studies, 122, Princeton Univ. Press, Princeton, NJ, 1989 | MR | Zbl

[26] G. S. Agarwal, E. Wolf, Phys. Rev. D, 2:10 (1970), 2161–2186 | DOI | MR | Zbl

[27] M. Blaszak, Z. Domański, Ann. Phys., 327:2 (2012), 167–211, arXiv: 1009.0150 | DOI | MR | Zbl

[28] I. M. Gelfand, G. E. Shilov, Obobschennye funktsii, v. 2, Prostranstva osnovnykh i obobschennykh funktsii, Fizmatlit, M., 1958 | MR

[29] I. M. Gelfand, G. E. Shilov, Obobschennye funktsii, v. 3, Nekotorye voprosy teorii differentsialnykh uravnenii, Fizmatlit, M., 1958 | MR

[30] L. Khermander, Vvedenie v teoriyu funktsii neskolkikh kompleksnykh peremennykh, Mir, M., 1968 | MR

[31] H. Omori, Y. Maeda, N. Miyazaki, A. Yoshioka, “Deformation quantization of Fréchet–Poisson algebras: Convergence of the Moyal product”, Quantization, Deformations, and Symmetries (Dijon, France, September 5–8, 1999), v. 2, Mathematical Physics Studies, 22, eds. G. Dito, D. Sternheimer, Kluwer, Dordrecht, 2000, 233–245 | MR | Zbl

[32] H. Omori, Y. Maeda, N. Miyazaki, A. Yoshioka, “Non-formal deformation quantization of Fréchet–Poisson algebras: the Heisenberg and Lie algebra case”, Geometric and Topological Methods for Quantum Field Theory, Contemporary Mathematics, 434, eds. S. Paycha, B. Uribe, AMS, Providence, RI, 2007, 99–124 | DOI | MR

[33] M. A. Soloviev, J. Math. Phys., 54:7 (2013), 073517, 16 pp., arXiv: 1312.6571 | DOI | MR | Zbl

[34] S. Beiser, H. Römer, S. Waldmann, Commun. Math. Phys., 272:1 (2007), 25–52, arXiv: math.QA/0506605 | DOI | MR | Zbl

[35] Kh. Shefer, Topologicheskie vektornye prostranstva, Mir, M., 1971 | MR

[36] F. A. Berezin, M. A. Shubin, Uravnenie Shredingera, Izd-vo MGU, M., 1983 | MR | MR | Zbl

[37] M. Rid, B. Saimon, Metody sovremennoi matematicheskoi fiziki, v. 1, Funktsionalnyi analiz, Mir, M., 1977 | MR

[38] F. A. Berezin, Matem. sb., 86(128):4(12) (1971), 578–610 | DOI | MR | Zbl

[39] A. G. Athanassoulis, N. J. Mauser, T. Paul, J. Math. Pures Appl. (9), 91:3 (2009), 296–338, arXiv: 0804.0259 | DOI | MR | Zbl