Geometric aspects of the holographic duality
Teoretičeskaâ i matematičeskaâ fizika, Tome 181 (2014) no. 3, pp. 436-448 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We briefly survey results related to applying the AdS/CFT correspondence to $\mathcal{N}=1$ supersymmetric models. These models, on one hand, are closest to realistic models of elementary particle physics and, on the other hand, are amenable to quantitative analysis using the AdS/CFT correspondence. Furthermore, they are related to such remarkable geometric objects as Sasakian manifolds and Ricci-flat cones, on which we particularly focus.
Keywords: AdS/CFT correspondence, supersymmetry, Sasakian manifold
Mots-clés : del Pezzo surface.
@article{TMF_2014_181_3_a1,
     author = {D. V. Bykov},
     title = {Geometric aspects of the~holographic duality},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {436--448},
     year = {2014},
     volume = {181},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2014_181_3_a1/}
}
TY  - JOUR
AU  - D. V. Bykov
TI  - Geometric aspects of the holographic duality
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2014
SP  - 436
EP  - 448
VL  - 181
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2014_181_3_a1/
LA  - ru
ID  - TMF_2014_181_3_a1
ER  - 
%0 Journal Article
%A D. V. Bykov
%T Geometric aspects of the holographic duality
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2014
%P 436-448
%V 181
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2014_181_3_a1/
%G ru
%F TMF_2014_181_3_a1
D. V. Bykov. Geometric aspects of the holographic duality. Teoretičeskaâ i matematičeskaâ fizika, Tome 181 (2014) no. 3, pp. 436-448. http://geodesic.mathdoc.fr/item/TMF_2014_181_3_a1/

[1] J. M. Maldacena, Adv. Theor. Math. Phys., 2:2 (1998), 231–252, arXiv: hep-th/9711200 | DOI | MR | Zbl

[2] M. R. Douglas, G. W. Moore, D-branes, quivers, and ALE instantons, arXiv: hep-th/9603167

[3] S. Kachru, E. Silverstein, Phys. Rev. Lett., 80:22 (1998), 4855–4858, arXiv: hep-th/9802183 | DOI | MR | Zbl

[4] J. M. Figueroa-O'Farrill, E. Hackett-Jones, G. Moutsopoulos, Class. Quant. Grav., 24:13 (2007), 3291–3308, arXiv: hep-th/0703192 | DOI | MR | Zbl

[5] C. Bär, Commun. Math. Phys., 154:3 (1993), 509–521 | DOI | MR | Zbl

[6] D. Berenstein, C. P. Herzog, I. R. Klebanov, JHEP, 06 (2002), 047, 23 pp., arXiv: hep-th/0202150 | DOI | MR

[7] G. T. Horowitz, A. Strominger, Nucl. Phys. B, 360:1 (1991), 197–209 | DOI | MR

[8] D. R. Morrison, M. R. Plesser, Adv. Theor. Math. Phys., 3:1 (1999), 1–81, arXiv: hep-th/9810201 | DOI | MR | Zbl

[9] E. Calabi, Ann. Sci. École Norm. Sup. (4), 12:2 (1979), 269–294 | DOI | MR

[10] D. Bykov, The Kähler metric of a blow-up, arXiv: 1307.2816

[11] P. Candelas, X. C. de la Ossa, Nucl. Phys. B, 342:1 (1990), 246–268 | DOI | MR

[12] L. A. Pando Zayas, A. A. Tseytlin, Phys. Rev. D, 63:8 (2001), 086006, 11 pp., arXiv: hep-th/0101043 | DOI | MR

[13] I. R. Klebanov, E. Witten, Nucl. Phys. B, 536:1–2 (1998), 199–218, arXiv: hep-th/9807080 | DOI | MR

[14] A. Besse, Einstein Manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), 10, Springer, Blin, 2002 | MR

[15] J. P. Gauntlett, D. Martelli, J. Sparks, D. Waldram, Adv. Theor. Math. Phys., 8:4 (2004), 711–734, arXiv: hep-th/0403002 | DOI | MR | Zbl

[16] G. Tian, S.-T. Yau, Commun. Math. Phys., 112:1 (1987), 175–203 | DOI | MR | Zbl

[17] B. Feng, A. Hanany, Y.-H. He, Nucl. Phys. B, 595:1–2 (2001), 165–200, arXiv: hep-th/0003085 | DOI | MR | Zbl

[18] S. Franco, A. Hanany, D. Martelli, J. Sparks, D. Vegh, B. Wecht, JHEP, 01 (2006), 128, 40 pp., arXiv: hep-th/0505211 | DOI | MR

[19] M. Cvetic, H. Lu, D. N. Page, C. N. Pope, Phys. Rev. Lett., 95:7 (2005), 071101, 4 pp., arXiv: hep-th/0504225 | DOI | MR

[20] M. Wijnholt, Adv. Theor. Math. Phys., 7:6 (2004), 1117–1153, arXiv: hep-th/0212021 | DOI | MR | Zbl

[21] H. Verlinde, M. Wijnholt, JHEP, 01 (2007), 106, 31 pp., arXiv: hep-th/0508089 | DOI | MR

[22] K. A. Intriligator, B. Wecht, Nucl. Phys. B, 667:1 (2003), 183–200, arXiv: hep-th/0304128 | DOI | MR | Zbl

[23] E. Witten, JHEP, 07 (1998), 006, 39 pp., arXiv: hep-th/9805112 | DOI | MR

[24] D. Martelli, J. Sparks, S.-T. Yau, Commun. Math. Phys., 268:1 (2006), 39–65, arXiv: hep-th/0503183 | DOI | MR | Zbl

[25] I. R. Klebanov, E. Witten, Nucl. Phys. B, 556:1–2 (1999), 89–114, arXiv: hep-th/9905104 | DOI | MR | Zbl

[26] I. R. Klebanov, A. Murugan, JHEP, 03 (2007), 042, 25 pp., arXiv: hep-th/0701064 | DOI | MR

[27] D. Bykov, Comments on the del Pezzo cone, arXiv: 1405.2319

[28] D. Martelli, J. Sparks, J. Geom. Phys., 59:8 (2009), 1175-1195, arXiv: 0707.1674 | DOI | MR | Zbl

[29] V. Apostolov, D. M. J. Calderbank, P. Gauduchon, J. Differ. Geom., 73:3 (2006), 359–412 | DOI | MR | Zbl

[30] D. Martelli, J. Sparks, JHEP, 04 (2008), 067, 44 pp., arXiv: 0709.2894 | DOI | MR

[31] L. A. Pando Zayas, A. A. Tseytlin, JHEP, 11 (2000), 028, 20 pp., arXiv: hep-th/0010088 | DOI | Zbl

[32] I. R. Klebanov, M. J. Strassler, JHEP, 08 (2000), 052, 35 pp., arXiv: hep-th/0007191 | DOI | MR | Zbl

[33] I. R. Klebanov, A. A. Tseytlin, Nucl. Phys. B, 578:1–2 (2000), 123–138, arXiv: hep-th/0002159 | DOI | MR | Zbl

[34] J. A. Minahan, K. Zarembo, JHEP, 03 (2003), 013, 29 pp., arXiv: hep-th/0212208 | DOI | MR

[35] G. Arutyunov, S. Frolov, J. Phys. A, 42:25 (2009), 254003, 121 pp., arXiv: 0901.4937 | DOI | MR | Zbl