A matrix model for hypergeometric Hurwitz numbers
Teoretičeskaâ i matematičeskaâ fizika, Tome 181 (2014) no. 3, pp. 421-435 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We present multimatrix models that are generating functions for the numbers of branched covers of the complex projective line ramified over $n$ fixed points $z_i$, $i=1,\dots,n$ (generalized Grothendieck's dessins d'enfants) of fixed genus, degree, and ramification profiles at two points $z_1$ and $z_n$. We sum over all possible ramifications at the other $n-2$ points with a fixed length of the profile at $z_2$ and with a fixed total length of profiles at the remaining $n-3$ points. All these models belong to a class of hypergeometric Hurwitz models and are therefore tau functions of the Kadomtsev–Petviashvili hierarchy. In this case, we can represent the obtained model as a chain of matrices with a (nonstandard) nearest-neighbor interaction of the type $\operatorname{tr} M_iM_{i+1}^{-1}$. We describe the technique for evaluating spectral curves of such models, which opens the way for obtaining $1/N^2$-expansions of these models using the topological recursion method. These spectral curves turn out to be algebraic.
Keywords: Hurwitz number, random complex matrix, Kadomtsev–Petviashvili hierarchy, spectral curve.
Mots-clés : matrix chain, bipartite graph
@article{TMF_2014_181_3_a0,
     author = {J. Ambj{\o}rn and L. O. Chekhov},
     title = {A~matrix model for hypergeometric {Hurwitz} numbers},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {421--435},
     year = {2014},
     volume = {181},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2014_181_3_a0/}
}
TY  - JOUR
AU  - J. Ambjørn
AU  - L. O. Chekhov
TI  - A matrix model for hypergeometric Hurwitz numbers
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2014
SP  - 421
EP  - 435
VL  - 181
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2014_181_3_a0/
LA  - ru
ID  - TMF_2014_181_3_a0
ER  - 
%0 Journal Article
%A J. Ambjørn
%A L. O. Chekhov
%T A matrix model for hypergeometric Hurwitz numbers
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2014
%P 421-435
%V 181
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2014_181_3_a0/
%G ru
%F TMF_2014_181_3_a0
J. Ambjørn; L. O. Chekhov. A matrix model for hypergeometric Hurwitz numbers. Teoretičeskaâ i matematičeskaâ fizika, Tome 181 (2014) no. 3, pp. 421-435. http://geodesic.mathdoc.fr/item/TMF_2014_181_3_a0/

[1] S. Kharchev, A. Marshakov, A. Mironov, A. Morozov, Internat. J. Modern Phys. A, 10:14 (1995), 2015–2051, arXiv: hep-th/9312210 | DOI | MR | Zbl

[2] A. Alexandrov, A. Mironov, A. Morozov, S. Natanzon, J. Phys. A: Math. Theor., 45:4 (2012), 045209, 10 pp., arXiv: 1103.4100 | DOI | MR | Zbl

[3] A. Okounkov, R. Pandharipande, Ann. Math. (2), 163:2 (2006), 517–560, arXiv: math/0204305 | DOI | MR | Zbl

[4] A. Yu. Orlov, D. M. Scherbin, TMF, 128:1 (2001), 84–108 | DOI | DOI | MR | Zbl

[5] A. Yu. Orlov, TMF, 146:2 (2006), 222–250 | DOI | DOI | MR | Zbl

[6] K. Takasaki, “Initial value problem for the Toda lattice hierarchy”, Group Representations and Systems of Differential Equations (University of Tokyo, Tokyo, December 20–27, 1982), Advanced Studies in Pure Mathematics, 4, ed. K. Okamoto, Kinokuniya Company Ltd, Tokyo; North-Holland, Amsterdam–New York–Oxford, 1984, 139–163 | MR | Zbl

[7] I. P. Goulden, D. M. Jackson, Adv. Math., 219:3 (2008), 932–951, arXiv: 0803.3980 | DOI | MR | Zbl

[8] J. Harnad, A. Yu. Orlov, Hypergeometric $\tau$-functions, Hurwitz numbers and enumeration of paths, arXiv: 1407.7800 | MR

[9] P. G. Zograf, Enumeration of Grothendieck's dessins and KP hierarchy, arXiv: 1312.2538 | MR

[10] M. Kazarian, P. Zograf, Virasoro constraints and topological recursion for Grothendieck's dessin counting, arXiv: 1406.5976 | MR

[11] J. Ambjørn, L. Chekhov, Ann. Inst. Henri Poincaré D, 1:3 (2014), 337–361 | DOI | MR | Zbl

[12] L. Chekhov, Yu. Makeenko, Modern Phys. Lett. A, 7:14 (1992), 1223–1236, arXiv: hep-th/9201033 | DOI | MR | Zbl

[13] S. Kharchev, A. Marshakov, A. Mironov, A. Morozov, A. Zabrodin, Phys. Lett. B, 275:3–4 (1992), 311–314, arXiv: hep-th/9111037 | DOI | MR

[14] A. Alexandrov, A. Mironov, A. Morozov, S. Natanzon, On KP-integrable Hurwitz functions, arXiv: 1405.1395 | MR

[15] G. V. Belyi, Izv. AN SSSR. Ser. matem., 43:2 (1979), 267–276 | DOI | MR | Zbl

[16] A. Grothendieck, “Esquisse d'un programme [Sketch of a programme]”, Geometric Galois Actions. 1, London Mathematical Society Lecture Note Series, 242, eds. L. Schneps, P. Lochak, Cambridge Univ. Press, Cambridge, 1997, 5–48 | MR | Zbl

[17] B. Eynard, JHEP, 11 (2004), 031, 35 pp. | DOI | MR

[18] L. Chekhov, B. Eynard, JHEP, 03 (2006), 014, 18 pp., arXiv: hep-th/0504116 | DOI | MR

[19] L. Chekhov, B. Eynard, N. Orantin, JHEP, 12 (2006), 053, 31 pp., arXiv: hep-th/0603003 | DOI | MR | Zbl

[20] B. Eynard, A. Prats Ferrer, JHEP, 07 (2009), 096, 29 pp., arXiv: 0805.1368 | DOI | MR

[21] J. Ambjørn, C. F. Kristjansen, Yu. M. Makeenko, Modern Phys. Lett. A, 7:34 (1992), 3187–3202, arXiv: hep-th/9207020 | DOI | MR | Zbl

[22] V. A. Marchenko, L. A. Pastur, Matem. sb., 72(114):4 (1967), 507–536 | DOI | MR | Zbl

[23] L. Chekhov, J. Phys. A: Math. Theor., 39:28 (2006), 8857–8893, arXiv: hep-th/0602013 | DOI | MR | Zbl

[24] A. Mironov, A. Morozov, G. Semenoff, Internat. J. Modern Phys. A, 10:14 (1995), 2015–2051, arXiv: hep-th/9312210 | DOI | MR | Zbl

[25] M. Guay-Paquet, J. Harnad, Generating functions for weighted Hurwitz numbers, arXiv: 1408.6766 | MR

[26] A. Alexandrov, A. Morozov, A. Mironov, Internat. J. Modern Phys. A, 19:24 (2004), 4127–4165 | DOI | MR

[27] V. Bouchard, M. Mariño, “Hurwitz numbers, matrix models, and enumerative geometry”, From Hodge Theory to Integrability and TQFT: tt*-geometry (Augsburg, Germany, May 25–29, 2007), Proceedings of Symposia in Pure Mathematics, 78, eds. R. Y. Donagi, K. Wendland, AMS, Providence, RI, 2008, 263–283, arXiv: 0709.1458 | DOI | MR | Zbl

[28] A. Morozov, Sh. Shakirov, JHEP, 04 (2009), 064, 33 pp., arXiv: 0902.2627 | DOI | MR

[29] G. Borot, B. Eynard, M. Mulase, B. Safnuk, J. Geom. Phys., 61:2 (2011), 522–540, arXiv: 0906.1206 | DOI | MR | Zbl

[30] L. Chekhov, Yu. Makeenko, Phys. Lett. B, 278:3 (1992), 271–278, arXiv: hep-th/9202006 | DOI | MR

[31] L. Chekhov, Acta Appl. Math., 48:1 (1997), 33–90, arXiv: hep-th/9509001 | DOI | MR | Zbl

[32] P. Norbury, Math. Res. Lett., 17:3 (2010), 467–481 | DOI | MR | Zbl

[33] N. Do, P. Norbury, Pruned Hurwitz numbers, arXiv: 1312.7516

[34] M. Kazarian, Adv. Math., 221:1 (2009), 1–21 | DOI | MR | Zbl