A~matrix model for hypergeometric Hurwitz numbers
Teoretičeskaâ i matematičeskaâ fizika, Tome 181 (2014) no. 3, pp. 421-435

Voir la notice de l'article provenant de la source Math-Net.Ru

We present multimatrix models that are generating functions for the numbers of branched covers of the complex projective line ramified over $n$ fixed points $z_i$, $i=1,\dots,n$ (generalized Grothendieck's dessins d'enfants) of fixed genus, degree, and ramification profiles at two points $z_1$ and $z_n$. We sum over all possible ramifications at the other $n-2$ points with a fixed length of the profile at $z_2$ and with a fixed total length of profiles at the remaining $n-3$ points. All these models belong to a class of hypergeometric Hurwitz models and are therefore tau functions of the Kadomtsev–Petviashvili hierarchy. In this case, we can represent the obtained model as a chain of matrices with a (nonstandard) nearest-neighbor interaction of the type $\operatorname{tr} M_iM_{i+1}^{-1}$. We describe the technique for evaluating spectral curves of such models, which opens the way for obtaining $1/N^2$-expansions of these models using the topological recursion method. These spectral curves turn out to be algebraic.
Keywords: Hurwitz number, random complex matrix, Kadomtsev–Petviashvili hierarchy, spectral curve.
Mots-clés : matrix chain, bipartite graph
@article{TMF_2014_181_3_a0,
     author = {J. Ambj{\o}rn and L. O. Chekhov},
     title = {A~matrix model for hypergeometric {Hurwitz} numbers},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {421--435},
     publisher = {mathdoc},
     volume = {181},
     number = {3},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2014_181_3_a0/}
}
TY  - JOUR
AU  - J. Ambjørn
AU  - L. O. Chekhov
TI  - A~matrix model for hypergeometric Hurwitz numbers
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2014
SP  - 421
EP  - 435
VL  - 181
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2014_181_3_a0/
LA  - ru
ID  - TMF_2014_181_3_a0
ER  - 
%0 Journal Article
%A J. Ambjørn
%A L. O. Chekhov
%T A~matrix model for hypergeometric Hurwitz numbers
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2014
%P 421-435
%V 181
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2014_181_3_a0/
%G ru
%F TMF_2014_181_3_a0
J. Ambjørn; L. O. Chekhov. A~matrix model for hypergeometric Hurwitz numbers. Teoretičeskaâ i matematičeskaâ fizika, Tome 181 (2014) no. 3, pp. 421-435. http://geodesic.mathdoc.fr/item/TMF_2014_181_3_a0/