A~matrix model for hypergeometric Hurwitz numbers
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 181 (2014) no. 3, pp. 421-435
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We present multimatrix models that are generating functions for the numbers of branched covers of the complex projective line ramified over $n$ fixed points $z_i$, $i=1,\dots,n$ (generalized Grothendieck's dessins d'enfants) of fixed genus, degree, and ramification profiles at two points $z_1$ and $z_n$. We sum over all possible ramifications at the other $n-2$ points with a fixed length of the profile at $z_2$ and with a fixed total length of profiles at the remaining $n-3$ points. All these models belong to a class of hypergeometric Hurwitz models and are therefore tau functions of the Kadomtsev–Petviashvili hierarchy. In this case, we can represent the obtained model as a chain of matrices with a (nonstandard) nearest-neighbor interaction of the type $\operatorname{tr} M_iM_{i+1}^{-1}$. We describe the technique for evaluating spectral curves of such models, which opens the way for obtaining $1/N^2$-expansions of these models using the topological recursion method. These spectral curves turn out to be algebraic.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
Hurwitz number, random complex matrix, Kadomtsev–Petviashvili hierarchy, spectral curve.
Mots-clés : matrix chain, bipartite graph
                    
                  
                
                
                Mots-clés : matrix chain, bipartite graph
@article{TMF_2014_181_3_a0,
     author = {J. Ambj{\o}rn and L. O. Chekhov},
     title = {A~matrix model for hypergeometric {Hurwitz} numbers},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {421--435},
     publisher = {mathdoc},
     volume = {181},
     number = {3},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2014_181_3_a0/}
}
                      
                      
                    J. Ambjørn; L. O. Chekhov. A~matrix model for hypergeometric Hurwitz numbers. Teoretičeskaâ i matematičeskaâ fizika, Tome 181 (2014) no. 3, pp. 421-435. http://geodesic.mathdoc.fr/item/TMF_2014_181_3_a0/
