Renormalization-group study of a superconducting phase transition: Asymptotic behavior of higher expansion orders and results of three-loop calculations
Teoretičeskaâ i matematičeskaâ fizika, Tome 181 (2014) no. 2, pp. 374-386 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We use quantum-field renormalization group methods to study the phase transition in an equilibrium system of nonrelativistic Fermi particles with the ‘`density–density" interaction in the formalism of temperature Green’s functions. We especially attend to the case of particles with spins greater than $1/2$ or fermionic fields with additional indices for some reason. In the vicinity of the phase transition point, we reduce this model to a $\phi^4$-type theory with a matrix complex skew-symmetric field. We define a family of instantons of this model and investigate the asymptotic behavior of quantum field expansions in this model. We calculate the $\beta$-functions of the renormalization group equation through the third order in the $(4{-}\epsilon)$-scheme. In the physical space dimensions $D=2,3$, we resum solutions of the renormalization group equation on trajectories of invariant charges. Our results confirm the previously proposed suggestion that in the system under consideration, there is a first-order phase transition into a superconducting state that occurs at a higher temperature than the classical theory predicts.
Keywords: temperature Green's function, superconductivity, renormalization group, instanton analysis, Borel summation.
@article{TMF_2014_181_2_a9,
     author = {G. A. Kalagov and M. Yu. Nalimov and M. V. Kompaniets},
     title = {Renormalization-group study of a~superconducting phase transition: {Asymptotic} behavior of higher expansion orders and results of three-loop calculations},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {374--386},
     year = {2014},
     volume = {181},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2014_181_2_a9/}
}
TY  - JOUR
AU  - G. A. Kalagov
AU  - M. Yu. Nalimov
AU  - M. V. Kompaniets
TI  - Renormalization-group study of a superconducting phase transition: Asymptotic behavior of higher expansion orders and results of three-loop calculations
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2014
SP  - 374
EP  - 386
VL  - 181
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2014_181_2_a9/
LA  - ru
ID  - TMF_2014_181_2_a9
ER  - 
%0 Journal Article
%A G. A. Kalagov
%A M. Yu. Nalimov
%A M. V. Kompaniets
%T Renormalization-group study of a superconducting phase transition: Asymptotic behavior of higher expansion orders and results of three-loop calculations
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2014
%P 374-386
%V 181
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2014_181_2_a9/
%G ru
%F TMF_2014_181_2_a9
G. A. Kalagov; M. Yu. Nalimov; M. V. Kompaniets. Renormalization-group study of a superconducting phase transition: Asymptotic behavior of higher expansion orders and results of three-loop calculations. Teoretičeskaâ i matematičeskaâ fizika, Tome 181 (2014) no. 2, pp. 374-386. http://geodesic.mathdoc.fr/item/TMF_2014_181_2_a9/

[1] M. V. Komarova, M. Yu. Nalimov, Yu. Khonkonen, TMF, 176:1 (2013), 89–97 | DOI | DOI | MR | Zbl

[2] A. A. Abrikosov, L. P. Gorkov, I. E. Dzyaloshinskii, Metody kvantovoi teorii polya v statisticheskoi fizike, Dobrosvet, M., 2006 | MR

[3] A. N. Vasilev, Funktsionalnye metody v kvantovoi teorii polya i statistike, Izd-vo LGU, L., 1976 | MR | Zbl

[4] M. I. Katsnelson, Graphene: Carbon in Two Dimensions, Cambridge Univ. Press, Cambridge, 2012

[5] A. N. Vasilev, Kvantovopolevaya renormgruppa v teorii kriticheskogo povedeniya i stokhasticheskoi dinamike, Izd-vo PIYaF, SPb., 1998 | MR | Zbl

[6] P. Calabrese, P. Parruccini, A. I. Sokolov, Phys. Rev. B, 68:9 (2003), 094415, 8 pp. | DOI

[7] P. Calabrese, E. V. Orlov, P. Parruccini, A. I. Sokolov, Phys. Rev. B, 67:2 (2003), 024413, 9 pp., arXiv: cond-mat/0207187 | DOI

[8] P. Calabrese, P. Parruccini, A. I. Sokolov, Phys. Rev. B, 66:18 (2002), 180403, 4 pp., arXiv: cond-mat/0205046 | DOI

[9] P. Calabrese, P. Parruccini, A. I. Sokolov, Phys. Rev. B, 68:9 (2003), 094415, 8 pp., arXiv: cond-mat/0304154 | DOI

[10] S. A. Antonenko, A. I. Sokolov, K. B. Varnashev, Phys. Lett. A, 208:1–2 (1995), 161–164, arXiv: cond-mat/9803377 | DOI

[11] S. A. Antonenko, A. I. Sokolov, Phys. Rev. B, 49:22 (1994), 15901–15912, arXiv: cond-mat/9809306 | DOI

[12] L. N. Lipatov, ZhETF, 72:2 (1977), 411–427 | MR

[13] J. A. M. Vermaseren, New features of FORM, arXiv: math-ph/0010025

[14] J. Honkonen, M. V. Komarova, M. Yu. Nalimov, Nucl. Phys. B, 714:3 (2005), 292–306, arXiv: hep-th/0412256 | DOI | MR | Zbl

[15] M. V. Komarova, M. Yu. Nalimov, TMF, 126:3 (2001), 409–426 | DOI | DOI | MR | Zbl

[16] J. Zinn-Justin, Quantum Field Theory and Critical Phenomena, Clarendon Press, Oxford, 1996 | MR

[17] H. Kleinert, V. Schulte-Frohlinde, Critical Properties of $\phi^4$-Theories, World Sci., Singapore, 2001 | MR

[18] M. Yu. Nalimov, V. A. Sergeev, L. Sladkoff, TMF, 159:1 (2009), 96–108 | DOI | DOI | MR | Zbl