Enumeration of plane partitions with a restricted number of parts
Teoretičeskaâ i matematičeskaâ fizika, Tome 181 (2014) no. 2, pp. 349-357 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We use the quantum statistical approach to estimate the number of restricted plane partitions of an integer $n$ with the number of parts not exceeding some finite $N$. We use the analogy between this number theory problem and the enumeration of microstates of the ideal two-dimensional Bose gas. The numbers of restricted plane partitions calculated with the conjectured expression agree well with the exact values for $n$ from $10$ to $20$.
Keywords: Bose gas, restricted partition.
Mots-clés : plane partition
@article{TMF_2014_181_2_a7,
     author = {A. Rovenchak},
     title = {Enumeration of plane partitions with a~restricted number of parts},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {349--357},
     year = {2014},
     volume = {181},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2014_181_2_a7/}
}
TY  - JOUR
AU  - A. Rovenchak
TI  - Enumeration of plane partitions with a restricted number of parts
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2014
SP  - 349
EP  - 357
VL  - 181
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2014_181_2_a7/
LA  - ru
ID  - TMF_2014_181_2_a7
ER  - 
%0 Journal Article
%A A. Rovenchak
%T Enumeration of plane partitions with a restricted number of parts
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2014
%P 349-357
%V 181
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2014_181_2_a7/
%G ru
%F TMF_2014_181_2_a7
A. Rovenchak. Enumeration of plane partitions with a restricted number of parts. Teoretičeskaâ i matematičeskaâ fizika, Tome 181 (2014) no. 2, pp. 349-357. http://geodesic.mathdoc.fr/item/TMF_2014_181_2_a7/

[1] N. M. Bogolyubov, TMF, 150:2 (2007), 193–203 | DOI | MR | Zbl

[2] G. Endryus, Teoriya razbienii, Nauka, M., 1982 | MR | Zbl

[3] G. Andrews, P. Paule, J. London Math. Soc. (2), 76:3 (2007), 647–666 | DOI | MR | Zbl

[4] F. C. Auluck, D. S. Kothari, Proc. Cambridge Philos. Soc., 42 (1946), 272–277 | DOI | MR | Zbl

[5] V. S. Nanda, Proc. Cambridge Philos. Soc., 47 (1951), 591–601 | DOI | MR | Zbl

[6] S. Grossmann, M. Holthaus, Phys. Rev. Lett., 79:19 (1997), 3557–3560 | DOI

[7] M. N. Tran, M. V. N. Murthy, R. K. Bhaduri, Ann. Phys., 311:1 (2004), 204–219 | DOI | MR | Zbl

[8] D. Prokhorov, A. Rovenchak, Condens. Matter Phys., 15:3 (2012), 33001, 9 pp., arXiv: 1210.1415 | DOI | MR

[9] C. S. Srivatsan, M. V. N. Murthy, R. J. Bhaduri, Pramana – J. Phys., 66:3 (2006), 485–494 | DOI

[10] A. Rovenchak, FNT, 35:5 (2009), 510–513

[11] R. P. Stanley, Stud. Appl. Math., 50 (1971), 167–188 ; 259–279 | DOI | MR | Zbl | Zbl

[12] N. M. Bogoliubov, J. Phys. A, 38:43 (2005), 9415–9430 | DOI | MR | Zbl

[13] P. Borrmann, G. Franke, J. Chem. Phys., 98:3 (1993), 2484–2485 | DOI

[14] R. N. Bracewell, The Fourier Transform and its Application, McGraw-Hill, New York, 2000 | MR

[15] C. Weiss, M. Holthaus, Europhys. Lett., 59:4 (2002), 486–492 | DOI

[16] P. Erdös, J. Lehner, Duke Math. J., 8:2 (1941), 335–345 | DOI | MR

[17] P. A. MacMahon, Phil. Trans. R. Soc. London A, 187 (1897), 619–673 | DOI

[18] On-line Encyclopedia of Integer Sequences, Triangle read by rows: $T[n,k]={}$plane partitions of $n$ containing $k$ parts, 2014 http://oeis.org/A091298 | MR

[19] On-line Encyclopedia of Integer Sequences, Number of planar partitions of $n$, 2014, http://oeis.org/A000219

[20] L. Mutafchiev, E. Kamenov, C. R. Acad. Bulgare Sci., 59:4 (2006), 361–366 | MR | Zbl

[21] E. M. Wright, Quart. J. Math. Oxford Ser., os-2:1 (1931), 177–189 | DOI