Enumeration of plane partitions with a~restricted number of parts
Teoretičeskaâ i matematičeskaâ fizika, Tome 181 (2014) no. 2, pp. 349-357

Voir la notice de l'article provenant de la source Math-Net.Ru

We use the quantum statistical approach to estimate the number of restricted plane partitions of an integer $n$ with the number of parts not exceeding some finite $N$. We use the analogy between this number theory problem and the enumeration of microstates of the ideal two-dimensional Bose gas. The numbers of restricted plane partitions calculated with the conjectured expression agree well with the exact values for $n$ from $10$ to $20$.
Keywords: Bose gas, restricted partition.
Mots-clés : plane partition
@article{TMF_2014_181_2_a7,
     author = {A. Rovenchak},
     title = {Enumeration of plane partitions with a~restricted number of parts},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {349--357},
     publisher = {mathdoc},
     volume = {181},
     number = {2},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2014_181_2_a7/}
}
TY  - JOUR
AU  - A. Rovenchak
TI  - Enumeration of plane partitions with a~restricted number of parts
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2014
SP  - 349
EP  - 357
VL  - 181
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2014_181_2_a7/
LA  - ru
ID  - TMF_2014_181_2_a7
ER  - 
%0 Journal Article
%A A. Rovenchak
%T Enumeration of plane partitions with a~restricted number of parts
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2014
%P 349-357
%V 181
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2014_181_2_a7/
%G ru
%F TMF_2014_181_2_a7
A. Rovenchak. Enumeration of plane partitions with a~restricted number of parts. Teoretičeskaâ i matematičeskaâ fizika, Tome 181 (2014) no. 2, pp. 349-357. http://geodesic.mathdoc.fr/item/TMF_2014_181_2_a7/