Correlated Lloyd model: Exact solution
Teoretičeskaâ i matematičeskaâ fizika, Tome 181 (2014) no. 2, pp. 312-321 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We describe an exactly solvable model of a disordered system that is a generalized Lloyd model{;} it differs from the classical model because the random potential is not a $\delta$-correlated random process. We show that the exact average Green's function in this case is independent of the correlation radius of the random potential and, as in the classical Lloyd model, is a crystal Green's function whose energy argument acquires an imaginary part dependent on the disorder degree.
Keywords: Lloyd model, exactly solvable model, correlated disordered system, density of states, average Green's function.
@article{TMF_2014_181_2_a4,
     author = {G. G. Kozlov},
     title = {Correlated {Lloyd} model: {Exact} solution},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {312--321},
     year = {2014},
     volume = {181},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2014_181_2_a4/}
}
TY  - JOUR
AU  - G. G. Kozlov
TI  - Correlated Lloyd model: Exact solution
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2014
SP  - 312
EP  - 321
VL  - 181
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2014_181_2_a4/
LA  - ru
ID  - TMF_2014_181_2_a4
ER  - 
%0 Journal Article
%A G. G. Kozlov
%T Correlated Lloyd model: Exact solution
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2014
%P 312-321
%V 181
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2014_181_2_a4/
%G ru
%F TMF_2014_181_2_a4
G. G. Kozlov. Correlated Lloyd model: Exact solution. Teoretičeskaâ i matematičeskaâ fizika, Tome 181 (2014) no. 2, pp. 312-321. http://geodesic.mathdoc.fr/item/TMF_2014_181_2_a4/

[1] F. M. Izrailev, A. A. Krokhin, N. M. Makarov, Phys. Rep., 512:3 (2012), 125–254, arXiv: 1110.1762 | DOI | MR

[2] M. Titov, H. Schomerus, Phys. Rev. Lett., 95:12 (2005), 126602, 4 pp. | DOI

[3] L. I. Deych, M. V. Erementchouk, A. A. Lisyansky, Physica B, 338:1–4 (2003), 79–81 | DOI

[4] A. Croy, P. Cain, M. Schreiber, Eur. Phys. J. B, 82:2 (2011), 107–112 | DOI | MR

[5] O. Derzhko, J. Richter, Phys. Rev. B, 59:1 (1999), 100–103 | DOI

[6] O. Derzhko, J. Richter, Phys. Rev. B, 55:21 (1997), 14298–14310 | DOI

[7] V. A. Malyshev, A. Rodriguez, F. Dominguez-Adame, Phys. Rev. B, 60:20 (1999), 14140–14146 | DOI

[8] F. A. B. F. de Moura, M. L. Lyra, Phys. Rev. Lett., 81:1 (1998), 3735–3738 | DOI

[9] D. H. Danlap, H.-L. Wu, P. W. Phillips, Phys. Rev. Lett., 65:1 (1990), 88–91 | DOI

[10] G. G. Kozlov, TMF, 171:1 (2012), 124–134 | DOI | DOI | Zbl

[11] G. G. Kozlov, Appl. Math., 2:8 (2011), 965–974 | DOI

[12] F. J. Dyson, Phys. Rev., 92:6 (1953), 1331–1338 | DOI | MR | Zbl

[13] P. Lloyd, J. Phys. C, 2:10 (1969), 1717–1725 | DOI

[14] C. R. Gochanour, H. C. Andersen, M. D. Fayer, J. Chem. Phys., 70:9 (1979), 4254–4271 | DOI

[15] G. G. Kozlov, The watching operators method in the theory of Frenkel exciton. Novel criterion of localization and its exact calculation for the non diagonal disordered 1D chain's zero-state, arXiv: cond-mat/9909335

[16] I. M. Lifshits, S. A. Gredeskul, L. A. Pastur, Vvedenie v teoriyu neuporyadochennykh sistem, Nauka, M., 1982 | MR | MR

[17] B. M. Miller, A. R. Pankov, Teoriya sluchainykh protsessov v primerakh i zadachakh, Fizmatlit, M., 2007 | Zbl

[18] E. S. Venttsel, L. A. Ovcharov, Teoriya sluchainykh protsessov i ee inzhenernoe prilozhenie, Vysshaya shkola, M., 2000