Correlated Lloyd model: Exact solution
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 181 (2014) no. 2, pp. 312-321
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We describe an exactly solvable model of a disordered system that is a generalized Lloyd model{;} it differs from the classical model because the random potential is not a $\delta$-correlated random process. We show that the exact average Green's function in this case is independent of the correlation radius of the random potential and, as in the classical Lloyd model, is a crystal Green's function whose energy argument acquires an imaginary part dependent on the disorder degree.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
Lloyd model, exactly solvable model, correlated disordered system, density of states, average Green's function.
                    
                  
                
                
                @article{TMF_2014_181_2_a4,
     author = {G. G. Kozlov},
     title = {Correlated {Lloyd} model: {Exact} solution},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {312--321},
     publisher = {mathdoc},
     volume = {181},
     number = {2},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2014_181_2_a4/}
}
                      
                      
                    G. G. Kozlov. Correlated Lloyd model: Exact solution. Teoretičeskaâ i matematičeskaâ fizika, Tome 181 (2014) no. 2, pp. 312-321. http://geodesic.mathdoc.fr/item/TMF_2014_181_2_a4/
