Necessary integrability conditions for evolutionary lattice
Teoretičeskaâ i matematičeskaâ fizika, Tome 181 (2014) no. 2, pp. 276-295 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the structure of solutions of the Lax equation $D_t(G)=[F,G]$ for formal series in powers of the shift operator. We show that if an equation with a given series $F$ of degree $m$ admits a solution $G$ of degree $k$, then it also admits a solution $H$ of degree $m$ such that $H^k=G^m$. We use this property to derive necessary integrability conditions for scalar evolutionary lattices.
Mots-clés : Volterra-type lattice
Keywords: higher symmetry, conservation law, integrability test.
@article{TMF_2014_181_2_a2,
     author = {V. E. Adler},
     title = {Necessary integrability conditions for evolutionary lattice},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {276--295},
     year = {2014},
     volume = {181},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2014_181_2_a2/}
}
TY  - JOUR
AU  - V. E. Adler
TI  - Necessary integrability conditions for evolutionary lattice
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2014
SP  - 276
EP  - 295
VL  - 181
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2014_181_2_a2/
LA  - ru
ID  - TMF_2014_181_2_a2
ER  - 
%0 Journal Article
%A V. E. Adler
%T Necessary integrability conditions for evolutionary lattice
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2014
%P 276-295
%V 181
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2014_181_2_a2/
%G ru
%F TMF_2014_181_2_a2
V. E. Adler. Necessary integrability conditions for evolutionary lattice. Teoretičeskaâ i matematičeskaâ fizika, Tome 181 (2014) no. 2, pp. 276-295. http://geodesic.mathdoc.fr/item/TMF_2014_181_2_a2/

[1] V. V. Sokolov, A. B. Shabat, Sov. Sci. Rev. Sect. C, 4 (1984), 221–280 | MR | Zbl

[2] A. V. Mikhailov, A. B. Shabat, R. I. Yamilov, UMN, 42:4(256) (1987), 3–53 | DOI | MR | Zbl

[3] V. V. Sokolov, UMN, 43:5(263) (1988), 133–163 | DOI | MR | Zbl

[4] A. V. Mikhailov, A. B. Shabat, V. V. Sokolov, “The symmetry approach to classification of integrable equations”, What is Integrability?, ed. V. E. Zakharov, Springer, Berlin, 1991, 115–184 | DOI | MR | Zbl

[5] A. B. Shabat, A. V. Mikhailov, “Symmetries – test of integrability”, Important Developments in Soliton Theory, eds. A. S. Fokas, V. E. Zakharov, Springer, Berlin, 1993, 355–372 | DOI | MR

[6] A. G. Meshkov, V. V. Sokolov, Ufimsk. matem. zhurn., 4:3 (2012), 104–154, arXiv: 1302.6010 | MR | Zbl

[7] R. I. Yamilov, UMN, 38:6(234) (1983), 155–156

[8] A. B. Shabat, R. I. Yamilov, Algebra i analiz, 2:2 (1990), 183–208 | MR | Zbl

[9] D. Levi, R. I. Yamilov, J. Math. Phys., 38:12 (1997), 6648–6674 | DOI | MR | Zbl

[10] R. I. Yamilov, J. Phys. A, 39:45 (2006), R541–R623 | DOI | MR | Zbl

[11] V. E. Adler, J. Phys. A, 41:14 (2008), 145201, 14 pp. | DOI | MR | Zbl

[12] I. Schur, “Über vertauschbare lineare Differentialausdrücke”, Sitzungsber. Berl. Math. Ges., 4 (1905), 2–8 | Zbl

[13] O. I. Bogoyavlenskii, UMN, 46:3(279) (1991), 3–48 | DOI | MR | Zbl

[14] V. E. Adler, V. V. Postnikov, J. Phys. A, 44:41 (2011), 415203, 17 pp. | DOI | MR | Zbl

[15] R. N. Garifullin, R. I. Yamilov, J. Phys. A, 45:34 (2012), 345205, 23 pp. | DOI | MR | Zbl

[16] R. N. Garifullin, A. V. Mikhailov, R. I. Yamilov, TMF, 180:1 (2014), 17–34 | DOI | DOI | Zbl

[17] S. I. Svinolupov, TMF, 65:2 (1985), 303–307 | DOI | MR | Zbl

[18] I. M. Gelfand, L. A. Dikii, Funkts. analiz i ego pril., 10:4 (1976), 13–29 | DOI | MR | Zbl

[19] G. Wilson, Quart. J. Math., 32:4 (1981), 491–512 | DOI | MR | Zbl

[20] R. M. Miura, C. S. Gardner, M. D. Kruskal, J. Math. Phys., 9:8 (1968), 1204–1209 | DOI | MR | Zbl

[21] H. Flaschka, Quart. J. Math., 34:1 (1983), 61–65 | DOI | MR | Zbl

[22] H. H. Chen, Y. C. Lee, C. S. Liu, Phys. Scr., 20:3–4 (1979), 490–492 | DOI | MR | Zbl

[23] A. G. Meshkov, Inverse Probl., 10:3 (1994), 635–653 | DOI | MR | Zbl

[24] B. A. Kupershmidt, Discrete Lax Equations and Differential-Difference Calculus, Astérisque, 123, Sociéte mathématique de France, Paris, 1985 | MR | Zbl

[25] P. E. Hydon, E. L. Mansfield, Found. Comput. Math., 4:2 (2004), 187–217 | DOI | MR | Zbl

[26] M. Jimbo, T. Miwa, Publ. Res. Inst. Math. Sci., 19:3 (1983), 943–1001 | DOI | MR | Zbl

[27] V. G. Kac, A. K. Raina, Bombay Lectures on Highest Weight Representations of Infinite Dimensional Lie Algebras, Advanced Series in Mathematical Physics, 2, World Sci., Singapore, 1987 | MR | Zbl

[28] L. Comtet, Advanced Combinatorics. The Art of Finite and Infinite Expansions, D. Reidel, Dordrecht, 1974 | MR | Zbl

[29] I. V. Cherednik, Funkts. analiz i ego pril., 12:3 (1978), 45–54 | DOI | MR | Zbl

[30] R. I. Yamilov, “Symmetries as integrability criteria”, Continuous Symmetries and Integrability of Discrete Equations, eds. D. Levi, P. Winternitz, R. I. Yamilov, in preparation