Buffering effect in continuous chains of unidirectionally coupled generators
Teoretičeskaâ i matematičeskaâ fizika, Tome 181 (2014) no. 2, pp. 254-275 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We propose a mathematical model of a continuous annular chain of unidirectionally coupled generators given by some nonlinear advection-type hyperbolic boundary value problem. Such problems are constructed by a limit transition from annular chains of unidirectionally coupled ordinary differential equations with an unbounded increase in the number of links. We find that a certain buffering phenomenon is realized in our boundary value problem. Namely, we show that any preassigned finite number of stable periodic motions of the traveling-wave type can coexist in the model.
Keywords: continuous chain of unidirectionally coupled generators, buffering, traveling wave, asymptotic form, stability.
@article{TMF_2014_181_2_a1,
     author = {S. D. Glyzin and A. Yu. Kolesov and N. Kh. Rozov},
     title = {Buffering effect in continuous chains of unidirectionally coupled generators},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {254--275},
     year = {2014},
     volume = {181},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2014_181_2_a1/}
}
TY  - JOUR
AU  - S. D. Glyzin
AU  - A. Yu. Kolesov
AU  - N. Kh. Rozov
TI  - Buffering effect in continuous chains of unidirectionally coupled generators
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2014
SP  - 254
EP  - 275
VL  - 181
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2014_181_2_a1/
LA  - ru
ID  - TMF_2014_181_2_a1
ER  - 
%0 Journal Article
%A S. D. Glyzin
%A A. Yu. Kolesov
%A N. Kh. Rozov
%T Buffering effect in continuous chains of unidirectionally coupled generators
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2014
%P 254-275
%V 181
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2014_181_2_a1/
%G ru
%F TMF_2014_181_2_a1
S. D. Glyzin; A. Yu. Kolesov; N. Kh. Rozov. Buffering effect in continuous chains of unidirectionally coupled generators. Teoretičeskaâ i matematičeskaâ fizika, Tome 181 (2014) no. 2, pp. 254-275. http://geodesic.mathdoc.fr/item/TMF_2014_181_2_a1/

[1] S. D. Glyzin, A. Yu. Kolesov, N. Kh. Rozov, Zhurn. vychisl. matem. i matem. fiziki, 46:10 (2006), 1809–1821 | MR

[2] E. F. Mischenko, V. A. Sadovnichii, A. Yu. Kolesov, N. Kh. Rozov, Mnogolikii khaos, Fizmatlit, M., 2012

[3] T. Kapitaniak, L. O. Chua, Internat. J. Bifurcation Chaos Appl. Sci. Engrg., 4:2 (1994), 477–482 | DOI | MR | Zbl

[4] I. P. Mariño, V. Pérez-Muñuzuri, V. Pérez-Villar, E. Sánchez, M. A. Matías, Physica D, 128:2–4 (1999), 224–235 | DOI

[5] P. Perlikowski, S. Yanchuk, M. Wolfrum, A. Stefanski, P. Mosiolek, T. Kapitaniak, Chaos, 20:1 (2010), 013111, 10 pp. | DOI | MR

[6] S. D. Glyzin, A. Yu. Kolesov, N. Kh. Rozov, TMF, 175:1 (2013), 62–83 | DOI | DOI | MR | Zbl

[7] S. D. Glyzin, A. Yu. Kolesov, N. Kh. Rozov, Izv. RAN. Ser. matem., 77:2 (2013), 53–96 | DOI | DOI | MR | Zbl

[8] S. D. Glyzin, A. Yu. Kolesov, N. Kh. Rozov, Differents. uravneniya, 49:10 (2013), 1227–1244 | DOI | MR | Zbl

[9] B. Khessard, N. Kazarinov, I. Ven, Teoriya i prilozheniya bifurkatsii rozhdeniya tsikla, Mir, M., 1985 | MR

[10] A. Yu. Kolesov, N. Kh. Rozov, Invariantnye tory nelineinykh volnovykh uravnenii, Fizmatlit, M., 2004

[11] D. Khenri, Geometricheskaya teoriya polulineinykh parabolicheskikh uravnenii, Mir, M., 1985 | MR | MR

[12] S. D. Glyzin, A. Yu. Kolesov, N. Kh. Rozov, TMF, 158:2 (2009), 292–311 | DOI | DOI | MR | Zbl

[13] T. Kato, Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR | Zbl