Synchronization in a~nonisochronous nonautonomous system
Teoretičeskaâ i matematičeskaâ fizika, Tome 181 (2014) no. 2, pp. 243-253

Voir la notice de l'article provenant de la source Math-Net.Ru

We study a model system of nonautonomous nonlinear differential equations arising in magnetodynamics theory. We find constraints on the parameters such that Lyapunov-stable solutions with a stabilized phase exist. These solutions describe the synchronization phenomenon in a nonisochronous system with slowly varying parameters.
Keywords: nonlinear oscillation, asymptotic behavior, synchronization, stability.
@article{TMF_2014_181_2_a0,
     author = {L. A. Kalyakin},
     title = {Synchronization in a~nonisochronous nonautonomous system},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {243--253},
     publisher = {mathdoc},
     volume = {181},
     number = {2},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2014_181_2_a0/}
}
TY  - JOUR
AU  - L. A. Kalyakin
TI  - Synchronization in a~nonisochronous nonautonomous system
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2014
SP  - 243
EP  - 253
VL  - 181
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2014_181_2_a0/
LA  - ru
ID  - TMF_2014_181_2_a0
ER  - 
%0 Journal Article
%A L. A. Kalyakin
%T Synchronization in a~nonisochronous nonautonomous system
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2014
%P 243-253
%V 181
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2014_181_2_a0/
%G ru
%F TMF_2014_181_2_a0
L. A. Kalyakin. Synchronization in a~nonisochronous nonautonomous system. Teoretičeskaâ i matematičeskaâ fizika, Tome 181 (2014) no. 2, pp. 243-253. http://geodesic.mathdoc.fr/item/TMF_2014_181_2_a0/