Synchronization in a~nonisochronous nonautonomous system
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 181 (2014) no. 2, pp. 243-253
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We study a model system of nonautonomous nonlinear differential equations arising in magnetodynamics theory. We find constraints on the parameters such that Lyapunov-stable solutions with a stabilized phase exist. These solutions describe the synchronization phenomenon in a nonisochronous system with slowly varying parameters.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
nonlinear oscillation, asymptotic behavior, synchronization, stability.
                    
                  
                
                
                @article{TMF_2014_181_2_a0,
     author = {L. A. Kalyakin},
     title = {Synchronization in a~nonisochronous nonautonomous system},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {243--253},
     publisher = {mathdoc},
     volume = {181},
     number = {2},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2014_181_2_a0/}
}
                      
                      
                    L. A. Kalyakin. Synchronization in a~nonisochronous nonautonomous system. Teoretičeskaâ i matematičeskaâ fizika, Tome 181 (2014) no. 2, pp. 243-253. http://geodesic.mathdoc.fr/item/TMF_2014_181_2_a0/
