Lax operators, Poisson groups, and the differential Galois theory
Teoretičeskaâ i matematičeskaâ fizika, Tome 181 (2014) no. 1, pp. 173-199 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We examine the transfer of a Poisson structure in a space of differential or difference Lax operators to the space of solutions of the corresponding auxiliary problem (the space of wave functions) in detail. We investigate a spontaneous symmetry breaking resulting in the appearance of a nontrivial Poisson structure on the differential or difference Galois group. We review the difference version of the Drinfeld–Sokolov theory and describe a new type of classical $r$-matrices related to generalized exchange algebras.
Mots-clés : Poisson reduction, Poisson–Lie group
Keywords: classical $r$-matrix, difference operator, differential Galois group, difference Galois group.
@article{TMF_2014_181_1_a8,
     author = {M. A. Semenov-Tian-Shansky},
     title = {Lax operators, {Poisson} groups, and the~differential {Galois} theory},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {173--199},
     year = {2014},
     volume = {181},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2014_181_1_a8/}
}
TY  - JOUR
AU  - M. A. Semenov-Tian-Shansky
TI  - Lax operators, Poisson groups, and the differential Galois theory
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2014
SP  - 173
EP  - 199
VL  - 181
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2014_181_1_a8/
LA  - ru
ID  - TMF_2014_181_1_a8
ER  - 
%0 Journal Article
%A M. A. Semenov-Tian-Shansky
%T Lax operators, Poisson groups, and the differential Galois theory
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2014
%P 173-199
%V 181
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2014_181_1_a8/
%G ru
%F TMF_2014_181_1_a8
M. A. Semenov-Tian-Shansky. Lax operators, Poisson groups, and the differential Galois theory. Teoretičeskaâ i matematičeskaâ fizika, Tome 181 (2014) no. 1, pp. 173-199. http://geodesic.mathdoc.fr/item/TMF_2014_181_1_a8/

[1] V. E. Zakharov, L. D. Faddeev, Funkts. analiz i ego pril., 5:4 (1971), 18–27 | DOI | MR | Zbl

[2] I. Marshall, M. A. Semenov-Tian-Shansky, Commun. Math. Phys., 284:2 (2008), 537–552 | DOI | MR | Zbl

[3] L. D. Faddeev, L. A. Takhtajan, “Liouville model on the lattice”, Field Theory, Quantum Gravity and Strings, Lecture Notes in Physics, 246, eds. H. J. de Vega, N. Sánchez, 1986, 166–179 | DOI | MR

[4] V. G. Drinfeld, V. V. Sokolov, Dokl. AN SSSR, 258:1 (1981), 11–16 | MR | Zbl

[5] E. Frenkel, N. Reshetikhin, M. A. Semenov-Tian-Shansky, Commun. Math. Phys., 192:3 (1998), 605–629 | DOI | MR | Zbl

[6] O. Babelon, Phys. Lett. B, 238:2–4 (1990), 234–238 | DOI | MR | Zbl

[7] M. A. Semenov-Tian-Shansky, Publ. Res. Inst. Math. Sci., 21:6 (1985), 1237–1260 | DOI | MR | Zbl

[8] P. Etingof, Electron. Res. Announc. Amer. Math. Soc., 1:1 (1995), 1–9 | DOI | MR | Zbl

[9] A. A. Belavin, V. G. Drinfeld, Funkts. analiz i ego pril., 16:3 (1982), 1–29 | DOI | MR

[10] M. A. Semenov-Tian-Shansky, A. V. Sevostyanov, Commun. Math. Phys., 192:3 (1998), 631–647 | DOI | MR | Zbl

[11] B. Kostant, Invent. Math., 48:2 (1978), 101–184 | DOI | MR | Zbl

[12] B. Kostant, “Quantization and representation theory”, Representation Theory of Lie Groups (Oxford, June 28 – July 15, 1977), London Mathematical Society Lecture Note Series, 34, ed. G. L. Luke, Cambridge Univ. Press, Cambridge, 1979, 287–316 | MR

[13] M. A. Semenov-Tian-Shansky, “Quantization of open Toda lattices”, Encyclopaedia of Mathematical Sciences, v. 16, Dynamical Systems VII, eds. V. I. Arnol'd, S. P. Novikov, Springer, 1994, 226–259 | DOI | MR

[14] A. V. Sevostyanov, Commun. Math. Phys., 204 (1999), 1–16 | DOI | MR | Zbl

[15] V. Ovsienko, S. Tabachnikov, Projective differential geometry old and new: from Schwarzian derivative to cohomology of diffeomorphism group., Cambridge Tracts in Math., 165, Cambridge Univ. Press, Cambridge, 2005 | MR

[16] G. Wilson, Phys. Lett. A, 132 (1988), 445–450 | DOI | MR | Zbl