Löwner evolution and finite-dimensional reductions of integrable systems
Teoretičeskaâ i matematičeskaâ fizika, Tome 181 (2014) no. 1, pp. 155-172 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Löwner equation is known as the one-dimensional reduction of the Benney chain and also as the dispersionless KP hierarchy. We propose a reverse process and show that time splitting in the Löwner or the Löwner–Kufarev equation leads to some known integrable systems.
Mots-clés : Löwner equation, Vlasov equation, hydrodynamic chain
Keywords: integrable system, Benney moment, collisionless kinetic equation, Hamiltonian structure, hydrodynamic reduction.
@article{TMF_2014_181_1_a7,
     author = {M. V. Pavlov and D. V. Prokhorov and A. Yu. Vasiliev and A. M. Zaharov},
     title = {L\"owner evolution and finite-dimensional reductions of integrable systems},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {155--172},
     year = {2014},
     volume = {181},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2014_181_1_a7/}
}
TY  - JOUR
AU  - M. V. Pavlov
AU  - D. V. Prokhorov
AU  - A. Yu. Vasiliev
AU  - A. M. Zaharov
TI  - Löwner evolution and finite-dimensional reductions of integrable systems
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2014
SP  - 155
EP  - 172
VL  - 181
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2014_181_1_a7/
LA  - ru
ID  - TMF_2014_181_1_a7
ER  - 
%0 Journal Article
%A M. V. Pavlov
%A D. V. Prokhorov
%A A. Yu. Vasiliev
%A A. M. Zaharov
%T Löwner evolution and finite-dimensional reductions of integrable systems
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2014
%P 155-172
%V 181
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2014_181_1_a7/
%G ru
%F TMF_2014_181_1_a7
M. V. Pavlov; D. V. Prokhorov; A. Yu. Vasiliev; A. M. Zaharov. Löwner evolution and finite-dimensional reductions of integrable systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 181 (2014) no. 1, pp. 155-172. http://geodesic.mathdoc.fr/item/TMF_2014_181_1_a7/

[1] Y. Kodama, J. Gibbons, Phys. Lett. A, 135:3 (1989), 167–170 | DOI | MR

[2] D. J. Benney, Stud. Appl. Math., 52:1 (1973), 45–50 | DOI | MR | Zbl

[3] E. A. Zabolotskaya, R. V. Khokhlov, Akusticheskii zhurn., XV:1 (1969), 40–47

[4] V. E. Zakharov, Funkts. analiz i ego pril., 14:2 (1980), 15–24 | DOI | MR | Zbl

[5] J. Gibbons, S. Tsarev, Phys. Lett. A, 258:4–6 (1999), 263–271 | DOI | MR | Zbl

[6] M. Mañas, L. Martínez Alonso, E. Medina, J. Phys. A, 35:2 (2002), 401–417 | DOI | MR | Zbl

[7] T. Takebe, L.-P. Teo, A. Zabrodin, J. Phys. A, 39:37 (2006), 11479–11501 | DOI | MR | Zbl

[8] B. Gustafsson, A. Vasil'ev, Conformal and Potential Analysis in Hele–Shaw Cells, Birkhäuser, Basel, 2006 | MR | Zbl

[9] S. Richardson, J. Fluid. Mech., 56:4 (1972), 609–618 | DOI | Zbl

[10] M. Mineev-Weinstein, P. B. Wiegmann, A. Zabrodin, Phys. Rev. Lett., 84:22 (2000), 5106–5109 | DOI

[11] I. Markina, A. Vasil'ev, “Virasoro algebra and dynamics in the space of univalent functions”, Five lectures in complex analysis (Sevilla, Spain, February 5–9, 2008), Contemporary Mathematics, 525, eds. M. D. Contreras, S. Diaz-Madrigal, AMS, Providence, RI; Real Sociedad Matemática Española, Madrid, 2010, 85–116 | DOI | MR | Zbl

[12] M. V. Pavlov, Int. Math. Res. Not., 2006:20 (2006), 46987, 43 pp. | DOI | MR | Zbl

[13] A. A. Vlasov, Many-Particle Theory and Its Application to Plasma, Gordon and Breach, New York, 1961 | MR

[14] M. V. Pavlov, S. P. Tsarev, Classical mechanical systems with one-and-a-half degrees of freedom and Vlasov kinetic equation, arXiv: ; Amer. Math. Soc. Transl. Ser. 2, 2014 (to appear) 1306.3737 | MR

[15] B. A. Kupershmidt, Yu. I. Manin, Funkts. analiz i ego pril., 11:3 (1977), 31–42 | DOI | MR | Zbl

[16] M. V. Pavlov, Commun. Math. Phys., 272:2 (2007), 469–505 | DOI | MR | Zbl

[17] J. Gibbons, Phys. Lett. A, 90:1–2 (1982), 7–8 | DOI | MR

[18] O. Tammi, Ann. Acad. Sci. Fenn. Ser. A. I. Math., 13:1 (1988), 125–136 | DOI | MR | Zbl

[19] M. V. Pavlov, S. P. Tsarev, UMN, 46:4(280) (1991), 169–170 | DOI | MR | Zbl

[20] B. A. Kupershmidt, Yu. I. Manin, Funkts. analiz i ego pril., 12:1 (1978), 25–37 | DOI | MR | Zbl

[21] S. P. Tsarev, Dokl. AN SSSR, 282:3 (1985), 534–537 | MR | Zbl

[22] S. P. Tsarev, Izv. AN SSSR. Ser. matem., 54:5 (1990), 1048–1068 | DOI | MR | Zbl

[23] E. V. Ferapontov, chastnoe soobschenie

[24] B. A. Kupershmidt, Proc. Roy. Irish Acad. Sect. A, 83:1 (1983), 45–74 ; “Normal and universal forms in integrable hydrodynamical systems”, Proceedings of Berkeley–Ames Conference on Nonlinear Problems in Control and Fluid Dynamics (Berkeley, CA, 1983), Lie Groups: History, Frontiers and Applications, Series B: Systems Information and Control, eds. L. R. Hunt, C. F. Martin, Math. Sci. Press, Brookline, MA, 1984, 357–378 | MR | Zbl | MR