L\"owner evolution and finite-dimensional reductions of integrable systems
Teoretičeskaâ i matematičeskaâ fizika, Tome 181 (2014) no. 1, pp. 155-172

Voir la notice de l'article provenant de la source Math-Net.Ru

The Löwner equation is known as the one-dimensional reduction of the Benney chain and also as the dispersionless KP hierarchy. We propose a reverse process and show that time splitting in the Löwner or the Löwner–Kufarev equation leads to some known integrable systems.
Keywords: Löwner equation, integrable system, Benney moment, collisionless kinetic equation, Hamiltonian structure, hydrodynamic reduction.
Mots-clés : Vlasov equation, hydrodynamic chain
@article{TMF_2014_181_1_a7,
     author = {M. V. Pavlov and D. V. Prokhorov and A. Yu. Vasiliev and A. M. Zaharov},
     title = {L\"owner evolution and finite-dimensional reductions of integrable systems},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {155--172},
     publisher = {mathdoc},
     volume = {181},
     number = {1},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2014_181_1_a7/}
}
TY  - JOUR
AU  - M. V. Pavlov
AU  - D. V. Prokhorov
AU  - A. Yu. Vasiliev
AU  - A. M. Zaharov
TI  - L\"owner evolution and finite-dimensional reductions of integrable systems
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2014
SP  - 155
EP  - 172
VL  - 181
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2014_181_1_a7/
LA  - ru
ID  - TMF_2014_181_1_a7
ER  - 
%0 Journal Article
%A M. V. Pavlov
%A D. V. Prokhorov
%A A. Yu. Vasiliev
%A A. M. Zaharov
%T L\"owner evolution and finite-dimensional reductions of integrable systems
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2014
%P 155-172
%V 181
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2014_181_1_a7/
%G ru
%F TMF_2014_181_1_a7
M. V. Pavlov; D. V. Prokhorov; A. Yu. Vasiliev; A. M. Zaharov. L\"owner evolution and finite-dimensional reductions of integrable systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 181 (2014) no. 1, pp. 155-172. http://geodesic.mathdoc.fr/item/TMF_2014_181_1_a7/