Beta pentagon relations
Teoretičeskaâ i matematičeskaâ fizika, Tome 181 (2014) no. 1, pp. 73-85 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The (quantum) pentagon relation underlies the existing constructions of three-dimensional quantum topology in the combinatorial framework of triangulations. We discuss a special class of integral pentagon relations and their relations to the Faddeev-type operator pentagon relations.
Keywords: pentagon relation, quantum dilogarithm, locally compact Abelian group.
@article{TMF_2014_181_1_a4,
     author = {R. M. Kashaev},
     title = {Beta pentagon relations},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {73--85},
     year = {2014},
     volume = {181},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2014_181_1_a4/}
}
TY  - JOUR
AU  - R. M. Kashaev
TI  - Beta pentagon relations
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2014
SP  - 73
EP  - 85
VL  - 181
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2014_181_1_a4/
LA  - ru
ID  - TMF_2014_181_1_a4
ER  - 
%0 Journal Article
%A R. M. Kashaev
%T Beta pentagon relations
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2014
%P 73-85
%V 181
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2014_181_1_a4/
%G ru
%F TMF_2014_181_1_a4
R. M. Kashaev. Beta pentagon relations. Teoretičeskaâ i matematičeskaâ fizika, Tome 181 (2014) no. 1, pp. 73-85. http://geodesic.mathdoc.fr/item/TMF_2014_181_1_a4/

[1] L. C. Biedenharn, J. Math. Phys., 31 (1953), 287–293 | DOI | MR | Zbl

[2] J. P. Elliott, Proc. Roy. Soc. London. Ser. A, 218:1134 (1953), 345–370 | DOI

[3] R. Kashaev, Feng Luo, G. Vartanov, A TQFT of Turaev–Viro type on shaped triangulations, arXiv: 1210.8393 | MR

[4] J. E. Andersen, R. Kashaev, A new formulation of the Teichmüller TQFT, arXiv: 1305.4291

[5] G. Ponzano, T. Regge, “Semiclassical limit of Racah coefficients”, Spectroscopic and Group Theoretical Methods in Physics, eds. F. Bloch, S. G. Cohen, A. De-Shalit, S. Sambursky, I. Talmi, North-Holland, Amsterdam, 1968, 1–58

[6] V. G. Turaev, O. Ya. Viro, Topology, 31:4 (1992), 865–902 | DOI | MR | Zbl

[7] L. D. Faddeev, Lett. Math. Phys., 34:3 (1995), 249–254 | DOI | MR | Zbl

[8] T. Shintani, J. Fac. Sci. Univ. Tokyo Sect.IA Math., 24:1 (1977), 167–199 | MR | Zbl

[9] N. Kurokawa, Proc. Japan Acad. Ser. A Math. Sci., 67:3 (1991), 61–64 | DOI | MR | Zbl

[10] E. W. Barnes, Trans. Cambridge Philos. Soc., 19 (1904), 374–425 | Zbl

[11] L. D. Faddeev, Current-like variables in massive and massless integrable models, arXiv: hep-th/9408041 | MR

[12] L. D. Faddeev, R. M. Kashaev, A. Yu. Volkov, Commun. Math. Phys., 219:1 (2001), 199–219 | DOI | MR | Zbl

[13] A. Yu. Volkov, Commun. Math. Phys., 258:2 (2005), 257–273 | DOI | MR | Zbl

[14] S. L. Woronowicz, Rev. Math. Phys., 12:6 (2000), 873–920 | DOI | MR | Zbl

[15] R. M. Kashaev, “Discrete Liouville equation and Teichmüller theory”, Handbook of Teichmüller Theory, v. III, IRMA Lectures in Mathematics and Theoretical Physics, 17, Eur. Math. Soc. (EMS), Zürich, 2012, 821–851 | MR | Zbl

[16] V. P. Spiridonov, UMN, 56:1(337) (2001), 181–182 | DOI | DOI | MR | Zbl