Quantum $N$-body problem: Matrix structures and equations
Teoretičeskaâ i matematičeskaâ fizika, Tome 181 (2014) no. 1, pp. 218-240
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider matrix structures in the quantum $N$-body problem that generalize the Faddeev components for resolvents, $T$-matrices, and eigenfunctions of the continuous spectrum. We write matrix equations for the introduced components of $T$-matrices and resolvents and use these equations to obtain matrix operators generalizing the matrix three-particle Faddeev operators to the case of arbitrarily many particles. We determine the eigenfunctions of the continuous spectrum of these matrix operators.
Keywords:
quantum $N$-body problem, Faddeev integral equation, integral equation for wave function components, differential equation for wave function components, resolvent
Mots-clés : $T$-matrix.
Mots-clés : $T$-matrix.
@article{TMF_2014_181_1_a11,
author = {S. L. Yakovlev},
title = {Quantum $N$-body problem: {Matrix} structures and equations},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {218--240},
publisher = {mathdoc},
volume = {181},
number = {1},
year = {2014},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2014_181_1_a11/}
}
S. L. Yakovlev. Quantum $N$-body problem: Matrix structures and equations. Teoretičeskaâ i matematičeskaâ fizika, Tome 181 (2014) no. 1, pp. 218-240. http://geodesic.mathdoc.fr/item/TMF_2014_181_1_a11/