Real projective connections, V. I. Smirnov's approach, and black-hole-type solutions of the Liouville equation
Teoretičeskaâ i matematičeskaâ fizika, Tome 181 (2014) no. 1, pp. 206-217 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider real projective connections on Riemann surfaces and their corresponding solutions of the Liouville equation. We show that these solutions have singularities of a special type (a black-hole type) on a finite number of simple analytic contours. We analyze the case of the Riemann sphere with four real punctures, considered in V. I. Smirnov's thesis (Petrograd, 1918) in detail.
Keywords: uniformization, Riemann surface, projective connection, Fuchsian projective connection
Mots-clés : monodromy group, Liouville equation, Liouville action, singular solution.
@article{TMF_2014_181_1_a10,
     author = {L. A. Takhtadzhyan},
     title = {Real projective connections, {V.} {I.~Smirnov's} approach, and black-hole-type solutions of {the~Liouville} equation},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {206--217},
     year = {2014},
     volume = {181},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2014_181_1_a10/}
}
TY  - JOUR
AU  - L. A. Takhtadzhyan
TI  - Real projective connections, V. I. Smirnov's approach, and black-hole-type solutions of the Liouville equation
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2014
SP  - 206
EP  - 217
VL  - 181
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2014_181_1_a10/
LA  - ru
ID  - TMF_2014_181_1_a10
ER  - 
%0 Journal Article
%A L. A. Takhtadzhyan
%T Real projective connections, V. I. Smirnov's approach, and black-hole-type solutions of the Liouville equation
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2014
%P 206-217
%V 181
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2014_181_1_a10/
%G ru
%F TMF_2014_181_1_a10
L. A. Takhtadzhyan. Real projective connections, V. I. Smirnov's approach, and black-hole-type solutions of the Liouville equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 181 (2014) no. 1, pp. 206-217. http://geodesic.mathdoc.fr/item/TMF_2014_181_1_a10/

[1] F. Klein, Math. Ann., 21:2 (1883), 141–218 | DOI | MR

[2] H. Poincaré, Acta Math., 4:1 (1884), 201–312 ; А. Пуанкаре, “О группах линейных уравнений”, Избранные труды, т. 3, Математика. Теоретическая физика. Анализ математических и естественнонаучных работ Анри Пуанкаре, Наука, М., 1974, 145–234 | DOI | MR | MR | Zbl

[3] H. Poincaré, J. Math. Pures Appl., 4 (1898), 157–230; А. Пуанкаре, Избранные труды, т. 3, 3, Математика. Теоретическая физика. Анализ математических и естественнонаучных работ Анри Пуанкаре, Наука, М., 1974

[4] A. N. Tyurin, UMN, 33:6(204) (1978), 149–195 | DOI | MR | Zbl

[5] P. G. Zograf, L. A. Takhtadzhyan, Funkts. analiz i ego pril., 19:3 (1985), 67–68 | DOI | MR | Zbl

[6] P. G. Zograf, L. A. Takhtadzhyan, Matem. sb., 132(174):2 (1987), 147–166 | DOI | MR | Zbl

[7] W. M. Goldman, J. Diff. Geom., 25 (1987), 297–326 | DOI | MR | Zbl

[8] V. I. Smirnov, Zadacha obrascheniya lineinogo differentsialnogo uravneniya vtorogo poryadka s chetyrmya osobymi tochkami, Dis. \ldots magistra, Petrogradskii universitet, Petrograd, 1918 ; Избранные труды: Аналитическая теория обыкновенных дифференциальных уравнений, Изд-во СПбГУ, СПб., 1996, 9–211 | Zbl | MR

[9] V. Smirnov, C. R. Sci. Acad. Paris, 171 (1920), 510–512; В. И. Смирнов, Избранные труды: Аналитическая теория обыкновенных дифференциальных уравнений, Изд-во СПбГУ, СПб., 1996, 212–214 | MR

[10] V. Smirnov, Bull. Sci. Math., 45 (1921), 93–120; 126–135; В. И. Смирнов, Избранные труды: Аналитическая теория обыкновенных дифференциальных уравнений, Изд-во СПбГУ, СПб., 1996, 215–249 | MR

[11] D. Hejhal, Acta Math., 135:1 (1975), 1–55 | DOI | MR | Zbl

[12] D. Hejhal, Bull. AMS, 84:3 (1978), 339–376 | DOI | MR | Zbl

[13] H. M. Farkas, I. Kra, Riemann Surfaces, Graduate Texts in Mathematics, 71, Springer, New York, 1992 | DOI | MR | Zbl

[14] L. A. Takhtajan, “Topics in the quantum geometry of Riemann surfaces: two-dimensional quantum gravity”, Quantum Groups and Their Applications in Physics (Varenna, 1994), Proceedings of the International School of Physics “Enrico Fermi”, 127, eds. L. Castellani, J. Wess, IOS Press, Amsterdam, 1996, 541–579 | MR | Zbl

[15] G. Faltings, Compos. Math., 48:2 (1983), 223–269 | MR | Zbl

[16] H. Tanigawa, J. Diff. Geom., 47:3 (1997), 399–419 | DOI | MR | Zbl

[17] F. Klein, Math. Ann., 64:2 (1907), 175–196 | DOI | MR | Zbl

[18] E. Hilb, Math. Ann., 66 (1909), 215–257 | DOI | MR | Zbl

[19] D. Hilbert, Grudzüge der allgemeinen Theorie der linearen Integralgleichungen, Chelsea, New York, 1953 | MR | Zbl

[20] P. J. Davis, The Schwarz function and its applications, The Carus Mathematical Monographs, 17, MAA, Buffalo, NY, 1974 | MR