Solutions of the Yang–Baxter equation associated with a topological
Teoretičeskaâ i matematičeskaâ fizika, Tome 181 (2014) no. 1, pp. 19-38 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We discuss a new type of solutions of the Yang–Baxter equation, called type-II solutions. They are related to quantum entanglements. The action of the corresponding braiding operator on the topological basis associated with a topological quantum field theory generates a $(2J{+}1)$-dimensional matrix form of the $R$-matrix for spin $J$, i.e., the Wigner function $D$ with the spectral parameter $\theta$ denoting the entanglement degree. We present concrete examples for $J=1/2$ and $J=1$ in an explicit form. We show that the Hamiltonian related to the type-II $R$-matrix is Kitaev's toy model.
Keywords: Yang–Baxter equation, topological quantum field theory, Wigner function $D$, Kitaev's toy model.
Mots-clés : quantum entanglement
@article{TMF_2014_181_1_a1,
     author = {Mo-Lin Ge and Li-Wei Yu and Kang Xue and Qing Zhao},
     title = {Solutions of {the~Yang{\textendash}Baxter} equation associated with a~topological},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {19--38},
     year = {2014},
     volume = {181},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2014_181_1_a1/}
}
TY  - JOUR
AU  - Mo-Lin Ge
AU  - Li-Wei Yu
AU  - Kang Xue
AU  - Qing Zhao
TI  - Solutions of the Yang–Baxter equation associated with a topological
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2014
SP  - 19
EP  - 38
VL  - 181
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2014_181_1_a1/
LA  - ru
ID  - TMF_2014_181_1_a1
ER  - 
%0 Journal Article
%A Mo-Lin Ge
%A Li-Wei Yu
%A Kang Xue
%A Qing Zhao
%T Solutions of the Yang–Baxter equation associated with a topological
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2014
%P 19-38
%V 181
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2014_181_1_a1/
%G ru
%F TMF_2014_181_1_a1
Mo-Lin Ge; Li-Wei Yu; Kang Xue; Qing Zhao. Solutions of the Yang–Baxter equation associated with a topological. Teoretičeskaâ i matematičeskaâ fizika, Tome 181 (2014) no. 1, pp. 19-38. http://geodesic.mathdoc.fr/item/TMF_2014_181_1_a1/

[1] C. N. Yang, Phys. Rev. Lett., 19:23 (1967), 1312–1315 | DOI | MR | Zbl

[2] C. N. Yang, Phys. Rev., 168:5 (1968), 1920–1923 | DOI

[3] R. J. Baxter, Exactly Solved Models in Statistical Mechanics, Academic Press, London, 1982 | MR | Zbl

[4] L. A.Takhtadzhyan, L. D. Faddeev, UMN, 34:5(209) (1979), 13–63 | DOI | MR

[5] L. D. Faddeev, Sov. Sci. Rev. Math. C, 1 (1980), 107–155 | MR | Zbl

[6] P. P. Kulish, E. K. Sklyanin, “Quantum spectral transform method recent developments”, Integrable Quantum Field Theories (Tvärminne, Finland, 23–27 March, 1981), Springer Lecture Notes in Physics, Lecture Notes in Physics, 151, eds. J. Hietarinta, C. Montonen, Springer, Berlin–New York, 1982, 61–119 | DOI | MR

[7] P. P. Kulish, E. K. Sklyanin, Zap. nauchn. sem. LOMI, 95 (1980), 129–160 | DOI | MR | Zbl

[8] L. Faddeev, M. Henneaus, R. Kashaev, F. Lambert, A. Volkov (eds.), Bethe Ansatz: 75 Years Later (Brussels, Belgium, October 19–21, 2006), Vrije Universiteit Brussel, Brussels, 2006

[9] M. Jimbo (ed.), Yang–Baxter Equation in Integrable Systems, Advanced Series in Mathematical Physics, 10, World Sci., Singapore, 1990 | DOI | MR | Zbl

[10] C. N. Yang, M.-L. Ge (eds.), Braid Group, Knot Theory, and Statistical Mechanics, Advanced Series in Mathematical Physics, 9, World Sci., Singapore, 1989 | MR | Zbl

[11] V. E. Korepin, N. M. Bogoliubov, A. G. Izergin, Quantum Inverse Scattering Method and Correlation Functions, Cambridge Univ. Press, Cambridge, 1993 | DOI | MR | Zbl

[12] A. B. Zamolodchikov, Al. B. Zamolodchikov, Ann. Phys., 120:2 (1979), 253–291 | DOI | MR

[13] L. H. Kauffman, Knots and Physics, Series on Knots and Everything, 1, World Sci., Singapore, 1991 | DOI | MR | Zbl

[14] D. A. Ivanov, Phys. Rev. Lett., 86:2 (2001), 268–271 | DOI

[15] D. C. Mattis, The Many-Body Problem: An Encyclopedia of Exactly Solved Models in One Dimension, World Sci., Singapore, 1993 | MR | Zbl

[16] V. G. Drinfeld, Zap. nauchn. sem. LOMI, 155 (1986), 18–49 | DOI | Zbl

[17] J.-L. Chen, K. Xue, M.-L. Ge, Phys. Rev. A, 76:4 (2007), 042324, 6 pp., arXiv: 0704.0709 | DOI

[18] Sh.-W. Hu, K. Xue, M.-L. Ge, Phys. Rev. A, 78:2 (2008), 022319, 10 pp. | DOI

[19] M. H. Freedman, M. Larsen, Z. Wang, Commun. Math. Phys., 227:3 (2002), 605–622 | DOI | MR | Zbl

[20] S. D. Sarma, M. Freedman, C. Nayak, Phys. Rev. Lett., 94:16 (2005), 166802, 4 pp. | DOI

[21] J. M. Franko, E. C. Rowell, Z. Wang, J. Knot Theory Ramifications, 15:4 (2006), 413–427 | DOI | MR | Zbl

[22] Z. Wang, “Topologization of electron liquids with Chern-Simons theory and quantum computation”, Differential Geometry and Physics, Nankai Tracts in Mathematics, 10, eds. M.-L. Ge, W. Zhang, World Sci., Singapore, 2006, 106–120 | MR | Zbl

[23] C. Zheng, J.-L. Li, S.-Y. Song, G. L. Long, J. Opt. Soc. Am. B, 30:6 (2013), 1688–1693 | DOI

[24] A. Yu. Kitaev, UFN, 171:10(suppl.) (2001), 131–136, arXiv: cond-mat/0010440 | DOI

[25] L. H. Kauffman, S. J. Lomonaco Jr., New J. Phys., 6 (2004), 134, 40 pp. | DOI

[26] Y. Zhang, L. H. Kauffman, M.-L. Ge, Int. J. Quantum Inform., 3:4 (2005), 669–678 | DOI | Zbl

[27] C. Nayak, F. Wilczek, Nucl. Phys. B, 479:3 (1996), 529–553, arXiv: cond-mat/9605145 | DOI | MR | Zbl

[28] C. Nayak, S. H. Simon, A. Stern, M. Freedman, S. D. Sarma, Rev. Modern Phys., 80:3 (2008), 1083–1159, arXiv: \href{http://arxiv.org/abs/}0707.1889{0707.1889} | DOI | MR | Zbl

[29] K. Niu, K. Xue, Q. Zhao, M.-L. Ge, J. Phys. A, 44:26 (2011), 265304, 25 pp. | DOI | Zbl

[30] Q. Zhao, R.-Y. Zhang, K. Xue, M.-L. Ge, Topological basis associated with {BWMA}, extremes of {L}$_{1}$-norm in quantum information and applications in physics, arXiv: 1211.6178

[31] V. F. R. Jones, Commun. Math. Phys., 125:3 (1989), 459–467 | DOI | MR | Zbl

[32] M. Jimbo, Commun. Math. Phys., 102:4 (1986), 537–547 | DOI | MR | Zbl

[33] Y. Cheng, M.-L. Ge, K. Xue, Commun. Math. Phys., 136:1 (1991), 195–208 | DOI | MR | Zbl

[34] M.-L. Ge, Y.-S. Wu, K. Xue, Internat. J. Modern Phys. A, 6 (1991), 3735–3779 | DOI | MR | Zbl

[35] H. N. V. Temperley, E. H. Lieb, Proc. R. Soc. London Ser. A, 322:1549 (1971), 251–280 | DOI | MR | Zbl

[36] M. Jimbo, Lett. Math. Phys., 10:1 (1985), 63–69 | DOI | MR | Zbl

[37] M.-L. Ge, A. C. T. Wu, J. Phys. A, 24:13 (1991), L725-L732 | DOI | MR | Zbl

[38] P. Fendley, E. Fradkin, Phys. Rev. B, 72:2 (2005), 024412, 19 pp., arXiv: cond-mat/0502071 | DOI | MR

[39] F. D. M. Haldane, Phys. Rev. Lett., 50:15 (1983), 1153–1156 | DOI | MR

[40] D. A. Varshalovich, A. N. Moskalev, V. K. Khersonskii, Kvantovaya teoriya uglovogo momenta, Nauka, L., 1975

[41] A. M. Perelomov, UFN, 123:1 (1977), 23–55 | DOI | DOI