Combinatorics of a strongly coupled boson system
Teoretičeskaâ i matematičeskaâ fizika, Tome 181 (2014) no. 1, pp. 5-18 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We introduce a quantum phase model as a limit for very strong interactions of a strongly correlated $q$-boson hopping model. We describe the general solution of the phase model and express scalar products of state vectors in determinant form. The representation of state vectors in terms of Schur functions allows obtaining a combinatorial interpretation of the scalar products in terms of nests of self-avoiding lattice paths. We show that under a special parameterization, the scalar products are equal to the generating functions of plane partitions confined in a finite box. We consider the two-dimensional vertex model related to the phase model and express the vertex model partition function with special boundary conditions in terms of the scalar product of the phase model state vectors.
Keywords: strongly interacting boson, self-avoiding lattice path, boxed plane partition.
Mots-clés : scalar product
@article{TMF_2014_181_1_a0,
     author = {N. M. Bogolyubov},
     title = {Combinatorics of a~strongly coupled boson system},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {5--18},
     year = {2014},
     volume = {181},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2014_181_1_a0/}
}
TY  - JOUR
AU  - N. M. Bogolyubov
TI  - Combinatorics of a strongly coupled boson system
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2014
SP  - 5
EP  - 18
VL  - 181
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2014_181_1_a0/
LA  - ru
ID  - TMF_2014_181_1_a0
ER  - 
%0 Journal Article
%A N. M. Bogolyubov
%T Combinatorics of a strongly coupled boson system
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2014
%P 5-18
%V 181
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2014_181_1_a0/
%G ru
%F TMF_2014_181_1_a0
N. M. Bogolyubov. Combinatorics of a strongly coupled boson system. Teoretičeskaâ i matematičeskaâ fizika, Tome 181 (2014) no. 1, pp. 5-18. http://geodesic.mathdoc.fr/item/TMF_2014_181_1_a0/

[1] L. D. Faddeev, Sov. Sci. Rev. Math. C, 1 (1980), 107–155 ; L. D. Faddeev, “Quantum completely integrable models in field theory”, 40 Years in Mathematical Physics, World Scientific Series in 20th Century Mathematics, 2, World Sci., Singapore, 1995, 187–235 | MR | Zbl | DOI | MR

[2] L. A. Takhtadzhyan, L. D. Faddeev, UMN, 34:5(209) (1979), 13–63 | DOI | MR

[3] P. P. Kulish, E. K. Sklyanin, “Quantum spectral transform method recent developments”, Integrable Quantum Field Theories (Tvärminne, Finland, 23–27 March, 1981), Springer Lecture Notes in Physics, Lecture Notes in Physics, 151, eds. J. Hietarinta, C. Montonen, Springer, Berlin–New York, 1982, 61–119 | DOI | MR

[4] V. G. Drinfeld, “Quantum groups”, Proceedings of the International Congress of Mathematicians (Berkeley, CA, USA, August 3–11, 1986), ed. M. Gleason, AMS, Providence, RI, 1987, 798–820 | MR

[5] N. Yu. Reshetikhin, L. A. Takhtadzhyan, L. D. Faddeev, Algebra i analiz, 1:1 (1989), 178–206 | MR | Zbl

[6] P. P. Kulish, N. Yu. Reshetikhin, Zap. nauch. semin. LOMI, 101 (1981), 101–110 | DOI | MR

[7] N. V. Tsilevich, Funkts. analiz i ego pril., 40:3 (2006), 53–65 | DOI | DOI | MR | Zbl

[8] N. M. Bogoliubov, J. Phys. A, 38:43 (2005), 9415–9430 | DOI | MR | Zbl

[9] N. M. Bogolyubov, TMF, 150:2 (2007), 193–203 | DOI | DOI | MR | Zbl

[10] A. M. Povolotsky, Phys. Rev. E, 69:6 (2004), 061109, 7 pp. | DOI | MR

[11] A. M. Povolotsky, J. Phys. A, 46:46 (2013), 465205, 25 pp. | DOI | MR | Zbl

[12] A. Borodin, I. Corwin, L. Petrov, T. Sasamoto, Spectral theory for the q-boson particle system, arXiv: 1308.3475 | MR

[13] P. Sułkowski, JHEP, 10 (2008), 104, 17 pp. | DOI | MR

[14] S. Okuda, Y. Yoshida, JHEP, 11 (2012), 146, 13 pp. | DOI | MR

[15] S. Okuda, Y. Yoshida, G/G gauged WZW-matter model, Bethe Ansatz for $q$-boson model and commutative Frobenius algebra, arXiv: 1308.4608

[16] C. Nayak, S. H. Simon, A. Stern, M. Freedman, S. Das Sarma, Rev. Modern Phys., 80:3 (2008), 1083–1159 | DOI | MR | Zbl

[17] P. P. Kulish, E. V. Damaskinsky, J. Phys. A, 23:9 (1990), L415–L419 | DOI | MR | Zbl

[18] N. M. Bogoliubov, R. K. Bullough, G. D. Pang, Phys. Rev. B, 47:17 (1993), 11495–11498 | DOI

[19] N. M. Bogoliubov, R. K. Bullough, J. Timonen, Phys. Rev. Lett., 72:25 (1994), 3933–3936 | DOI | MR | Zbl

[20] N. M. Bogoliubov, A. G. Izergin, N. A. Kitanine, Nucl. Phys. B, 516:3 (1998), 501–528 | DOI | MR | Zbl

[21] N. M. Bogoliubov, J. Timonen, Phil. Trans. R. Soc. London Ser. A, 369:1939 (2011), 1319–1333 | DOI | MR | Zbl

[22] N. M. Bogoliubov, Zap. nauchn. sem. POMI, 360 (2008), 5–30 | DOI | Zbl

[23] V. E. Korepin, N. M. Bogoliubov, A. G. Izergin, Quantum Inverse Scattering Method and Correlation Functions, Cambridge Univ. Press, Cambridge, 1993 | MR | Zbl

[24] I. G. Macdonald, Symmetric Functions and Hall Polynomials, Oxford Univ. Press, Oxford, 1995 | MR | Zbl

[25] R. P. Stanley, Enumerative Combinatorics, v. 2, Cambridge Studies in Advanced Mathematics, 62, Cambridge Univ. Press, Cambridge, 1999 | DOI | MR | Zbl

[26] P. Carruthers, M. M. Nieto, Rev. Modern Phys., 40:2 (1968), 411–440 | DOI

[27] G. Kuperberg, Int. Math. Res. Not., 1996:3 (1996), 139–150 | DOI | MR | Zbl

[28] N. M. Bogoliubov, C. Malyshev, Nucl. Phys. B, 879 (2014), 268–291 | DOI | MR | Zbl

[29] A. J. Guttmann, A. L. Owczarek, X. G. Viennot, J. Phys. A, 31:40 (1998), 8123–8135 | DOI | MR | Zbl

[30] D. M. Bressoud, Proofs and Confirmations. The Story of the Alternating Sign Matrix Conjecture, Cambridge Univ. Press, Cambridge, 1999 | MR | Zbl