Wave functions and eigenvalues of charge carriers in a~nanotube in a~neighborhood of the~Dirac point in the~presence of a~longitudinal electric field
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 180 (2014) no. 3, pp. 368-381
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Based on the Hamiltonian for charge carriers in carbon nanotubes with finite lengths, we obtain eigenvalues and eigenfunctions in a neighborhood of the Dirac points (wave functions written analogously to the two-component Dirac wave function are expressed in terms of Hermite polynomials, and the spectrum is equidistant) in the presence of a longitudinal electric field. We express the solution in terms of the Hermite functions in the case of carbon nanotubes with infinite lengths. Based on the obtained wave function for an elongated nanotube, we consider the problem of determining the coefficient of charge carrier transport through the nanotube. The results of finding the transport coefficient can also be applied to other nanoparticles, in particular, to carbon chains and nanotapes. We propose to use the eigenvalues and eigenfunctions of nanotubes with finite lengths to consider the problem of radiation generation in a nonlinear medium based on an array of such noninteracting nanotubes.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
two-wave Dirac wave function, nanotube array
Mots-clés : nanotape, transport coefficient.
                    
                  
                
                
                Mots-clés : nanotape, transport coefficient.
@article{TMF_2014_180_3_a5,
     author = {N. R. Sadykov},
     title = {Wave functions and eigenvalues of charge carriers in a~nanotube in a~neighborhood of {the~Dirac} point in the~presence of a~longitudinal electric field},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {368--381},
     publisher = {mathdoc},
     volume = {180},
     number = {3},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2014_180_3_a5/}
}
                      
                      
                    TY - JOUR AU - N. R. Sadykov TI - Wave functions and eigenvalues of charge carriers in a~nanotube in a~neighborhood of the~Dirac point in the~presence of a~longitudinal electric field JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2014 SP - 368 EP - 381 VL - 180 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2014_180_3_a5/ LA - ru ID - TMF_2014_180_3_a5 ER -
%0 Journal Article %A N. R. Sadykov %T Wave functions and eigenvalues of charge carriers in a~nanotube in a~neighborhood of the~Dirac point in the~presence of a~longitudinal electric field %J Teoretičeskaâ i matematičeskaâ fizika %D 2014 %P 368-381 %V 180 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/TMF_2014_180_3_a5/ %G ru %F TMF_2014_180_3_a5
N. R. Sadykov. Wave functions and eigenvalues of charge carriers in a~nanotube in a~neighborhood of the~Dirac point in the~presence of a~longitudinal electric field. Teoretičeskaâ i matematičeskaâ fizika, Tome 180 (2014) no. 3, pp. 368-381. http://geodesic.mathdoc.fr/item/TMF_2014_180_3_a5/
