Multiplicity of virtual levels at the~lower edge of the~continuous spectrum of a~two-particle Hamiltonian on a~lattice
Teoretičeskaâ i matematičeskaâ fizika, Tome 180 (2014) no. 3, pp. 329-341

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a system of two arbitrary quantum particles on a three-dimensional lattice with special dispersion functions (describing site-to-site particle transport), where the particles interact by a chosen attraction potential. We study how the number of eigenvalues of the family of the operators $h(k)$ depends on the particle interaction energy and the total quasimomentum $k\in\mathbb T^3$ (where $\mathbb T^3$ is a three-dimensional torus). Depending on the particle interaction energy, we obtain conditions under which the left edge of the continuous spectrum is simultaneously a multiple virtual level and an eigenvalue of the operator $h(\mathbf 0)$.
Keywords: two-particle Hamiltonian on a lattice, virtual level, virtual level multiplicity, eigenvalue.
@article{TMF_2014_180_3_a3,
     author = {M. I. Muminov and A. M. Hurramov},
     title = {Multiplicity of virtual levels at the~lower edge of the~continuous spectrum of a~two-particle {Hamiltonian} on a~lattice},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {329--341},
     publisher = {mathdoc},
     volume = {180},
     number = {3},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2014_180_3_a3/}
}
TY  - JOUR
AU  - M. I. Muminov
AU  - A. M. Hurramov
TI  - Multiplicity of virtual levels at the~lower edge of the~continuous spectrum of a~two-particle Hamiltonian on a~lattice
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2014
SP  - 329
EP  - 341
VL  - 180
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2014_180_3_a3/
LA  - ru
ID  - TMF_2014_180_3_a3
ER  - 
%0 Journal Article
%A M. I. Muminov
%A A. M. Hurramov
%T Multiplicity of virtual levels at the~lower edge of the~continuous spectrum of a~two-particle Hamiltonian on a~lattice
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2014
%P 329-341
%V 180
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2014_180_3_a3/
%G ru
%F TMF_2014_180_3_a3
M. I. Muminov; A. M. Hurramov. Multiplicity of virtual levels at the~lower edge of the~continuous spectrum of a~two-particle Hamiltonian on a~lattice. Teoretičeskaâ i matematičeskaâ fizika, Tome 180 (2014) no. 3, pp. 329-341. http://geodesic.mathdoc.fr/item/TMF_2014_180_3_a3/