Multipoint Vallée Poussin problem for convolution operators with nodes defined inside an angle
Teoretičeskaâ i matematičeskaâ fizika, Tome 180 (2014) no. 2, pp. 264-271
Cet article a éte moissonné depuis la source Math-Net.Ru
We prove the solvability of the multipoint Vallée Poussin (interpolation) problem for the kernel of a convolution operator in the case where the zeros of the characteristic function and nodal points (zeros of an entire function) are inside an angle.
Keywords:
convolution operator, Fisher pair.
Mots-clés : multipoint Vallée Poussin problem, interpolation
Mots-clés : multipoint Vallée Poussin problem, interpolation
@article{TMF_2014_180_2_a7,
author = {V. V. Napalkov and A. A. Nuyatov},
title = {Multipoint {Vall\'ee} {Poussin} problem for convolution operators with nodes defined inside an~angle},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {264--271},
year = {2014},
volume = {180},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2014_180_2_a7/}
}
TY - JOUR AU - V. V. Napalkov AU - A. A. Nuyatov TI - Multipoint Vallée Poussin problem for convolution operators with nodes defined inside an angle JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2014 SP - 264 EP - 271 VL - 180 IS - 2 UR - http://geodesic.mathdoc.fr/item/TMF_2014_180_2_a7/ LA - ru ID - TMF_2014_180_2_a7 ER -
%0 Journal Article %A V. V. Napalkov %A A. A. Nuyatov %T Multipoint Vallée Poussin problem for convolution operators with nodes defined inside an angle %J Teoretičeskaâ i matematičeskaâ fizika %D 2014 %P 264-271 %V 180 %N 2 %U http://geodesic.mathdoc.fr/item/TMF_2014_180_2_a7/ %G ru %F TMF_2014_180_2_a7
V. V. Napalkov; A. A. Nuyatov. Multipoint Vallée Poussin problem for convolution operators with nodes defined inside an angle. Teoretičeskaâ i matematičeskaâ fizika, Tome 180 (2014) no. 2, pp. 264-271. http://geodesic.mathdoc.fr/item/TMF_2014_180_2_a7/
[1] V. V. Napalkov, A. A. Nuyatov, Matem. sb., 203:2 (2012), 77–86 | DOI | DOI | MR | Zbl
[2] V. V. Napalkov, S. V. Popenov, Dokl. RAN, 381:2 (2001), 164–166 | MR | Zbl
[3] H. Muggli, Comment. Math. Helv., 11:1 (1938), 151–179 | DOI | MR | Zbl
[4] Zh. Sebashtyan-i-Silva, “O nekotorykh klassakh lokalno-vypuklykh prostranstv, vazhnykh v prilozheniyakh”, Matematika. Periodicheskii sbornik perevodov inostrannykh statei, t. 1, vyp. 1, ed. A. O. Gelfond, IL, M., 1957, 60–77