Multipoint Vallée Poussin problem for convolution operators with nodes defined inside an angle
Teoretičeskaâ i matematičeskaâ fizika, Tome 180 (2014) no. 2, pp. 264-271 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We prove the solvability of the multipoint Vallée Poussin (interpolation) problem for the kernel of a convolution operator in the case where the zeros of the characteristic function and nodal points (zeros of an entire function) are inside an angle.
Keywords: convolution operator, Fisher pair.
Mots-clés : multipoint Vallée Poussin problem, interpolation
@article{TMF_2014_180_2_a7,
     author = {V. V. Napalkov and A. A. Nuyatov},
     title = {Multipoint {Vall\'ee} {Poussin} problem for convolution operators with nodes defined inside an~angle},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {264--271},
     year = {2014},
     volume = {180},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2014_180_2_a7/}
}
TY  - JOUR
AU  - V. V. Napalkov
AU  - A. A. Nuyatov
TI  - Multipoint Vallée Poussin problem for convolution operators with nodes defined inside an angle
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2014
SP  - 264
EP  - 271
VL  - 180
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2014_180_2_a7/
LA  - ru
ID  - TMF_2014_180_2_a7
ER  - 
%0 Journal Article
%A V. V. Napalkov
%A A. A. Nuyatov
%T Multipoint Vallée Poussin problem for convolution operators with nodes defined inside an angle
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2014
%P 264-271
%V 180
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2014_180_2_a7/
%G ru
%F TMF_2014_180_2_a7
V. V. Napalkov; A. A. Nuyatov. Multipoint Vallée Poussin problem for convolution operators with nodes defined inside an angle. Teoretičeskaâ i matematičeskaâ fizika, Tome 180 (2014) no. 2, pp. 264-271. http://geodesic.mathdoc.fr/item/TMF_2014_180_2_a7/

[1] V. V. Napalkov, A. A. Nuyatov, Matem. sb., 203:2 (2012), 77–86 | DOI | DOI | MR | Zbl

[2] V. V. Napalkov, S. V. Popenov, Dokl. RAN, 381:2 (2001), 164–166 | MR | Zbl

[3] H. Muggli, Comment. Math. Helv., 11:1 (1938), 151–179 | DOI | MR | Zbl

[4] Zh. Sebashtyan-i-Silva, “O nekotorykh klassakh lokalno-vypuklykh prostranstv, vazhnykh v prilozheniyakh”, Matematika. Periodicheskii sbornik perevodov inostrannykh statei, t. 1, vyp. 1, ed. A. O. Gelfond, IL, M., 1957, 60–77