Algebraic aspects of gauge theories
Teoretičeskaâ i matematičeskaâ fizika, Tome 180 (2014) no. 2, pp. 217-233 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Gauge theories are primary tools in modern elementary particle physics. The generally recognized mathematical foundations of these theories are in differential geometry, namely, in the theory of connections in a principal fiber bundle. We propose another approach to the mathematical description of gauge theories based on a combination of algebraic and geometric methods.
Keywords: derivation, principal fiber bundle, covariant derivative, gauge, Yang–Mills field, Yang–Mills action, gauge invariance
Mots-clés : moduli space.
@article{TMF_2014_180_2_a4,
     author = {V. V. Zharinov},
     title = {Algebraic aspects of gauge theories},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {217--233},
     year = {2014},
     volume = {180},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2014_180_2_a4/}
}
TY  - JOUR
AU  - V. V. Zharinov
TI  - Algebraic aspects of gauge theories
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2014
SP  - 217
EP  - 233
VL  - 180
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2014_180_2_a4/
LA  - ru
ID  - TMF_2014_180_2_a4
ER  - 
%0 Journal Article
%A V. V. Zharinov
%T Algebraic aspects of gauge theories
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2014
%P 217-233
%V 180
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2014_180_2_a4/
%G ru
%F TMF_2014_180_2_a4
V. V. Zharinov. Algebraic aspects of gauge theories. Teoretičeskaâ i matematičeskaâ fizika, Tome 180 (2014) no. 2, pp. 217-233. http://geodesic.mathdoc.fr/item/TMF_2014_180_2_a4/

[1] C. N. Yang, R. L. Mills, Phys. Rev., 96:1 (1954), 191–195 | DOI | MR | Zbl

[2] C. Ehresmann, “Les connexions infinitèsimales dans un espace fibré différentable”, Colloque de Topologie (Bruxelles, June 5–8, 1950), Paris, Masson, 1951, 29–55 | MR | Zbl

[3] V. F. Atiyah, “Geometrical aspects of gauge theoris”, Proceedings of the International Congress of Mathematicians (Helsinki, August 15–23, 1978), ed. O. Letho, University of Helsinki, Helsinki, 1980, 881–885 | MR

[4] D. Bleecker, Gauge Theory and Variational Principles, Addison-Wesley, Reading, MA, 1981 | MR | Zbl

[5] K. B. Marathe, G. Martucci, The Mathematical Foundations of Gauge Theories, Studies in Mathematical Physics, 5, North-Holland, Amsterdam, 1992 | MR | Zbl

[6] C. J. Isham, Modern Differential Geometry for Physicists, World Sci., Singapore, 1999 | MR | Zbl

[7] A. A. Slavnov, L. D. Faddeev, Vvedenie v kvantovuyu teoriyu kalibrovochnykh polei, Nauka, M., 1978 | MR

[8] S. Maklein, Gomologiya, Mir, M., 1966 | MR | Zbl

[9] V. V. Zharinov, TMF, 174:2 (2013), 256–271 | DOI | DOI | MR | Zbl