Solvability of the Dirichlet problem for second-order elliptic equations
Teoretičeskaâ i matematičeskaâ fizika, Tome 180 (2014) no. 2, pp. 189-205 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In our preceding papers, we obtained necessary and sufficient conditions for the existence of an $(n{-}1)$-dimensionally continuous solution of the Dirichlet problem in a bounded domain $Q\subset\mathbb R_n$ under natural restrictions imposed on the coefficients of the general second-order elliptic equation, but these conditions were formulated in terms of an auxiliary operator equation in a special Hilbert space and are difficult to verify. We here obtain necessary and sufficient conditions for the problem solvability in terms of the initial problem for a somewhat narrower class of right-hand sides of the equation and also prove that the obtained conditions become the solvability conditions in the space $W_2^1(Q)$ under the additional requirement that the boundary function belongs to the space $W_2^{1/2}(\partial Q)$.
Keywords: Dirichlet problem
Mots-clés : elliptic equation.
@article{TMF_2014_180_2_a2,
     author = {V. Zh. Dumanyan},
     title = {Solvability of {the~Dirichlet} problem for second-order elliptic equations},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {189--205},
     year = {2014},
     volume = {180},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2014_180_2_a2/}
}
TY  - JOUR
AU  - V. Zh. Dumanyan
TI  - Solvability of the Dirichlet problem for second-order elliptic equations
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2014
SP  - 189
EP  - 205
VL  - 180
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2014_180_2_a2/
LA  - ru
ID  - TMF_2014_180_2_a2
ER  - 
%0 Journal Article
%A V. Zh. Dumanyan
%T Solvability of the Dirichlet problem for second-order elliptic equations
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2014
%P 189-205
%V 180
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2014_180_2_a2/
%G ru
%F TMF_2014_180_2_a2
V. Zh. Dumanyan. Solvability of the Dirichlet problem for second-order elliptic equations. Teoretičeskaâ i matematičeskaâ fizika, Tome 180 (2014) no. 2, pp. 189-205. http://geodesic.mathdoc.fr/item/TMF_2014_180_2_a2/

[1] V. P. Mikhailov, Differents. uravneniya, 12:10 (1976), 1877–1891 | MR | Zbl

[2] V. P. Mikhailov, Matem. zametki, 27:1 (1980), 137–145 | MR | Zbl

[3] V. P. Mikhailov, Differentsialnye uravneniya v chastnykh proizvodnykh, Nauka, M., 1983 | MR

[4] A. K. Guschin, V. P. Mikhailov, “O granichnykh znacheniyakh reshenii ellipticheskikh uravnenii”, Obobschennye funktsii i ikh primeneniya v matematicheskoi fizike (24–28 noyabrya 1980\;g., Moskva), VTs AN SSSR, M., 1981, 189–205

[5] O. I. Bogoyavlenskii, V. S. Vladimirov, I. V. Volovich, A. K. Guschin, Yu. N. Drozhzhinov, V. V. Zharinov, V. P. Mikhailov, Tr. MIAN, 175, 63–102 | MR | Zbl

[6] I. M. Petrushko, Matem. sb., 119(161) (1982), 48–77 | DOI | MR | Zbl

[7] I. M. Petrushko, Matem. sb., 120(162):4 (1983), 569–588 | DOI | MR | Zbl

[8] A. K. Guschin, Matem. sb., 137(179):1(9), 19–64 | DOI | MR | Zbl

[9] A. K. Guschin, V. P. Mikhailov, Matem. sb., 182:6 (1991), 787–810 | DOI | MR | Zbl

[10] A. K. Guschin, TMF, 174:2 (2013), 243–255 | DOI | DOI | MR | Zbl

[11] A. K. Guschin, Matem. sb., 203:1 (2012), 3–30 | DOI | DOI | MR | Zbl

[12] A. K. Guschin, Dokl. RAN, 446:5 (2012), 487–489 | DOI | Zbl

[13] V. Zh. Dumanyan, Izv. NAN Armenii. Ser. Matem., 45:1 (2010), 31–52 | MR | Zbl

[14] V. Zh. Dumanyan, Dokl. RAN, 386:6 (2002), 735–737 | MR | Zbl

[15] V. Zh. Dumanian, Note Mat., 21:2 (2002/2003), 99–118 | MR | Zbl

[16] V. Zh. Dumanyan, Matem. sb., 202:7, 75–94 | DOI | DOI | MR | Zbl

[17] V. Zh. Dumanyan, Dokl. RAN, 436:2 (2011), 159–162 | DOI | MR | Zbl

[18] V. P. Mikhailov, A. K. Guschin, “Dopolnitelnye glavy kursa “Uravneniya matematicheskoi fiziki””, Lekts. kursy NOTs, 7, MIAN, M., 2007, 3–144 | DOI

[19] V. Zh. Dumanyan, Proc. of the Yerevan State Univ. Phys. and Mathem. Sci., 2011, no. 2, 17–21 | MR | Zbl