Mots-clés : paraxial approximation
@article{TMF_2014_180_2_a1,
author = {S. Yu. Dobrokhotov and G. N. Makrakis and V. E. Nazaikinskii},
title = {Maslov's canonical operator, {H\"ormander's} formula, and localization of {the~Berry{\textendash}Balazs} solution in the~theory of wave beams},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {162--188},
year = {2014},
volume = {180},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2014_180_2_a1/}
}
TY - JOUR AU - S. Yu. Dobrokhotov AU - G. N. Makrakis AU - V. E. Nazaikinskii TI - Maslov's canonical operator, Hörmander's formula, and localization of the Berry–Balazs solution in the theory of wave beams JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2014 SP - 162 EP - 188 VL - 180 IS - 2 UR - http://geodesic.mathdoc.fr/item/TMF_2014_180_2_a1/ LA - ru ID - TMF_2014_180_2_a1 ER -
%0 Journal Article %A S. Yu. Dobrokhotov %A G. N. Makrakis %A V. E. Nazaikinskii %T Maslov's canonical operator, Hörmander's formula, and localization of the Berry–Balazs solution in the theory of wave beams %J Teoretičeskaâ i matematičeskaâ fizika %D 2014 %P 162-188 %V 180 %N 2 %U http://geodesic.mathdoc.fr/item/TMF_2014_180_2_a1/ %G ru %F TMF_2014_180_2_a1
S. Yu. Dobrokhotov; G. N. Makrakis; V. E. Nazaikinskii. Maslov's canonical operator, Hörmander's formula, and localization of the Berry–Balazs solution in the theory of wave beams. Teoretičeskaâ i matematičeskaâ fizika, Tome 180 (2014) no. 2, pp. 162-188. http://geodesic.mathdoc.fr/item/TMF_2014_180_2_a1/
[1] M. Lax, W. H. Louisell, W. B. McKnight, Phys. Rev. A, 11:4 (1975), 1365–1370 | DOI | MR
[2] Lord Rayleigh, Phil. Mag., 43:261 (1897), 125–132 ; J. Durnin, J. Opt. Soc. Amer., 4:4 (1987), 651–654 ; J. Durnin, J. J. Miceli, J. H. Eberly, Phys. Rev. Lett., 58:15 (1987), 1499–1501 ; D. McGloin, K. Dholakia, Contemporary Phys., 46:1 (2005), 15–28 ; A. P. Kiselev, Optics and Spectroscopy, 102:4 (2007), 603–622 ; G. A. Siviloglou, J. Broky, A. Dogariu, D. N. Christodoulides, Phys. Rev. Lett., 99:21 (2007), 213901, 4 pp. ; A. Chong, W. H. Renninger, D. N. Christodoulides, F. W. Wise, Nature Photonics, 4:2 (2010), 103–106 ; K. Dholakia, T. Čižmár, Nature Photonics, 5:6 (2011), 335–342 ; A. P. Kiselev, A. B. Plachenov, P. Chamorro-Posada, Phys. Rev. A, 85:4 (2012), 043835, 11 pp. ; T. Graf, J. Moloney, S. Vankataramani, Physica D, 243:1 (2013), 32–44 | DOI | Zbl | DOI | DOI | DOI | DOI | DOI | DOI | DOI | DOI | DOI | Zbl
[3] M. V. Berry, N. L. Balazs, Amer. J. Phys., 47 (1979), 264–267 | DOI
[4] V. S. Vladimirov, Obobschennye funktsii v matematicheskoi fizike. Sovremennye fiziko-tekhnicheskie problemy, Nauka, M., 1979 | MR
[5] V. S. Vladimirov, V. V. Zharinov, Uravneniya matematicheskoi fiziki, Nauka, M., 2000 | MR | Zbl
[6] V. P. Maslov, Teoriya vozmuschenii i asimptoticheskie metody, MGU, M., 1965
[7] V. P. Maslov, M. V. Fedoryuk, Kvaziklassicheskoe priblizhenie dlya uravnenii kvantovoi mekhaniki, Nauka, M., 1976 | MR
[8] L. Hörmander, Acta Math., 127:1 (1971), 79–183 | DOI | MR
[9] S. Yu. Dobrokhotov, G. N. Makrakis, V. E. Nazaikinskii, T. Ya. Tudorovskii, TMF, 177:3 (2013), 355–386 | DOI | Zbl
[10] S. Yu. Dobrokhotov, G. Makrakis, V. E. Nazaikinskii, “Fourier integrals and a new representation of Maslov's canonical operator near caustics”, Spectral Theory and Differential Equations, V. A. Marchenko 90th Anniversary Collection, Amer. Math. Soc., Providence, RI, 2014 (to appear) , arXiv: 1307.2292 | MR | Zbl
[11] V. P. Maslov, Operatornye metody, Nauka, M., 1973 | MR
[12] V. P. Maslov, Kompleksnyi metod VKB v nelineinykh uravneniyakh, Nauka, M., 1977 | MR
[13] V. G. Danilov, Le Vu An, Matem. sb., 110(152):3(11) (1979), 323–368 ; V. L. Dubnov, V. P. Maslov, V. E. Nazaikinskii, Russ. J. Math. Phys., 3:2 (1995), 141–190 | DOI | MR | Zbl | MR | Zbl
[14] Wolfram Research, Mathematica, , Champaign, Ill, 2014 www.wolfram.com/mathematica | MR
[15] S. Yu. Dobrokhotov, B. Tirotstsi, A. I. Shafarevich, Matem. zametki, 82:5 (2007), 792–796 | DOI | MR | Zbl
[16] G. A. Kalyabin, Tr. MIAN, 255 (2006), 161–169 | MR | Zbl