Maslov's canonical operator, Hörmander's formula, and localization of the Berry–Balazs solution in the theory of wave beams
Teoretičeskaâ i matematičeskaâ fizika, Tome 180 (2014) no. 2, pp. 162-188 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For three-dimensional Schrödinger equations, we study how to localize exact solutions represented as the product of an Airy function (Berry–Balazs solutions) and a Bessel function and known as Airy–Bessel beams in the paraxial approximation in optics. For this, we represent such solutions in the form of Maslov's canonical operator acting on compactly supported functions on special Lagrangian manifolds. We then use a result due to Hörmander, which permits using the formula for the commutation of a pseudodifferential operator with Maslov's canonical operator to “move” the compactly supported amplitudes outside the canonical operator and thus obtain effective formulas preserving the structure based on the Airy and Bessel functions. We discuss the influence of dispersion effects on the obtained solutions.
Keywords: Schrödinger equation, Airy–Bessel beam, localization, Maslov's canonical operator.
Mots-clés : paraxial approximation
@article{TMF_2014_180_2_a1,
     author = {S. Yu. Dobrokhotov and G. N. Makrakis and V. E. Nazaikinskii},
     title = {Maslov's canonical operator, {H\"ormander's} formula, and localization of {the~Berry{\textendash}Balazs} solution in the~theory of wave beams},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {162--188},
     year = {2014},
     volume = {180},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2014_180_2_a1/}
}
TY  - JOUR
AU  - S. Yu. Dobrokhotov
AU  - G. N. Makrakis
AU  - V. E. Nazaikinskii
TI  - Maslov's canonical operator, Hörmander's formula, and localization of the Berry–Balazs solution in the theory of wave beams
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2014
SP  - 162
EP  - 188
VL  - 180
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2014_180_2_a1/
LA  - ru
ID  - TMF_2014_180_2_a1
ER  - 
%0 Journal Article
%A S. Yu. Dobrokhotov
%A G. N. Makrakis
%A V. E. Nazaikinskii
%T Maslov's canonical operator, Hörmander's formula, and localization of the Berry–Balazs solution in the theory of wave beams
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2014
%P 162-188
%V 180
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2014_180_2_a1/
%G ru
%F TMF_2014_180_2_a1
S. Yu. Dobrokhotov; G. N. Makrakis; V. E. Nazaikinskii. Maslov's canonical operator, Hörmander's formula, and localization of the Berry–Balazs solution in the theory of wave beams. Teoretičeskaâ i matematičeskaâ fizika, Tome 180 (2014) no. 2, pp. 162-188. http://geodesic.mathdoc.fr/item/TMF_2014_180_2_a1/

[1] M. Lax, W. H. Louisell, W. B. McKnight, Phys. Rev. A, 11:4 (1975), 1365–1370 | DOI | MR

[2] Lord Rayleigh, Phil. Mag., 43:261 (1897), 125–132 ; J. Durnin, J. Opt. Soc. Amer., 4:4 (1987), 651–654 ; J. Durnin, J. J. Miceli, J. H. Eberly, Phys. Rev. Lett., 58:15 (1987), 1499–1501 ; D. McGloin, K. Dholakia, Contemporary Phys., 46:1 (2005), 15–28 ; A. P. Kiselev, Optics and Spectroscopy, 102:4 (2007), 603–622 ; G. A. Siviloglou, J. Broky, A. Dogariu, D. N. Christodoulides, Phys. Rev. Lett., 99:21 (2007), 213901, 4 pp. ; A. Chong, W. H. Renninger, D. N. Christodoulides, F. W. Wise, Nature Photonics, 4:2 (2010), 103–106 ; K. Dholakia, T. Čižmár, Nature Photonics, 5:6 (2011), 335–342 ; A. P. Kiselev, A. B. Plachenov, P. Chamorro-Posada, Phys. Rev. A, 85:4 (2012), 043835, 11 pp. ; T. Graf, J. Moloney, S. Vankataramani, Physica D, 243:1 (2013), 32–44 | DOI | Zbl | DOI | DOI | DOI | DOI | DOI | DOI | DOI | DOI | DOI | Zbl

[3] M. V. Berry, N. L. Balazs, Amer. J. Phys., 47 (1979), 264–267 | DOI

[4] V. S. Vladimirov, Obobschennye funktsii v matematicheskoi fizike. Sovremennye fiziko-tekhnicheskie problemy, Nauka, M., 1979 | MR

[5] V. S. Vladimirov, V. V. Zharinov, Uravneniya matematicheskoi fiziki, Nauka, M., 2000 | MR | Zbl

[6] V. P. Maslov, Teoriya vozmuschenii i asimptoticheskie metody, MGU, M., 1965

[7] V. P. Maslov, M. V. Fedoryuk, Kvaziklassicheskoe priblizhenie dlya uravnenii kvantovoi mekhaniki, Nauka, M., 1976 | MR

[8] L. Hörmander, Acta Math., 127:1 (1971), 79–183 | DOI | MR

[9] S. Yu. Dobrokhotov, G. N. Makrakis, V. E. Nazaikinskii, T. Ya. Tudorovskii, TMF, 177:3 (2013), 355–386 | DOI | Zbl

[10] S. Yu. Dobrokhotov, G. Makrakis, V. E. Nazaikinskii, “Fourier integrals and a new representation of Maslov's canonical operator near caustics”, Spectral Theory and Differential Equations, V. A. Marchenko 90th Anniversary Collection, Amer. Math. Soc., Providence, RI, 2014 (to appear) , arXiv: 1307.2292 | MR | Zbl

[11] V. P. Maslov, Operatornye metody, Nauka, M., 1973 | MR

[12] V. P. Maslov, Kompleksnyi metod VKB v nelineinykh uravneniyakh, Nauka, M., 1977 | MR

[13] V. G. Danilov, Le Vu An, Matem. sb., 110(152):3(11) (1979), 323–368 ; V. L. Dubnov, V. P. Maslov, V. E. Nazaikinskii, Russ. J. Math. Phys., 3:2 (1995), 141–190 | DOI | MR | Zbl | MR | Zbl

[14] Wolfram Research, Mathematica, , Champaign, Ill, 2014 www.wolfram.com/mathematica | MR

[15] S. Yu. Dobrokhotov, B. Tirotstsi, A. I. Shafarevich, Matem. zametki, 82:5 (2007), 792–796 | DOI | MR | Zbl

[16] G. A. Kalyabin, Tr. MIAN, 255 (2006), 161–169 | MR | Zbl