Anomalous waves as an object of statistical topography: Problem statement
Teoretičeskaâ i matematičeskaâ fizika, Tome 180 (2014) no. 1, pp. 112-124 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Based on ideas of statistical topography, we analyze the boundary-value problem of the appearance of anomalous large waves {(}rogue waves{\rm)} on the sea surface. The boundary condition for the sea surface is regarded as a closed stochastic quasilinear equation in the kinematic approximation. We obtain the stochastic Liouville equation, which underlies the derivation of an equation describing the joint probability density of fields of sea surface displacement and its gradient. We formulate the statistical problem with the stochastic topographic inhomogeneities of the sea bottom taken into account. It describes diffusion in the phase space, and its solution must answer the question whether information about the existence of anomalous large waves is contained in the quasilinear equation under consideration.
Mots-clés : anomalous wave, rogue wave, Liouville equation
Keywords: stochastic topography.
@article{TMF_2014_180_1_a8,
     author = {V. I. Klyatskin},
     title = {Anomalous waves as an~object of statistical topography: {Problem} statement},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {112--124},
     year = {2014},
     volume = {180},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2014_180_1_a8/}
}
TY  - JOUR
AU  - V. I. Klyatskin
TI  - Anomalous waves as an object of statistical topography: Problem statement
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2014
SP  - 112
EP  - 124
VL  - 180
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2014_180_1_a8/
LA  - ru
ID  - TMF_2014_180_1_a8
ER  - 
%0 Journal Article
%A V. I. Klyatskin
%T Anomalous waves as an object of statistical topography: Problem statement
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2014
%P 112-124
%V 180
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2014_180_1_a8/
%G ru
%F TMF_2014_180_1_a8
V. I. Klyatskin. Anomalous waves as an object of statistical topography: Problem statement. Teoretičeskaâ i matematičeskaâ fizika, Tome 180 (2014) no. 1, pp. 112-124. http://geodesic.mathdoc.fr/item/TMF_2014_180_1_a8/

[1] Sekst Empirik, “Dve knigi protiv fizikov”, Sochineniya v dvukh tomakh, v. 1, ed. A. F. Losev, Mysl, M., 1975, 244–376

[2] V. I. Klyatskin, Dinamika stokhasticheskikh sistem, Fizmatlit, M., 2002 | Zbl | Zbl

[3] V. I. Klyatskin, Ocherki po dinamike stokhasticheskikh sistem, URSS, M., 2012

[4] Ya. B. Zeldovich, S. A. Molchanov, A. A. Ruzmaikin, D. D. Sokolov, UFN, 152:5 (1987), 3–32 | DOI | DOI | MR

[5] V. I. Klyatskin, UFN, 182:11 (2012), 1235–1237 | DOI | DOI

[6] V. I. Klyatskin, “On the criterion of stochastic structure formation in random media”, Chaos and Complex Systems, Proceedings of the 4th International Interdisciplinary Chaos Symposium (Antalya, Turkey, April 29 – May 2, 2012), eds. S. G. Stavrinides, S. Banerjee, S. H. Caglar, M. Ozer, Springer, Berlin, 2013, 69–74

[7] V. I. Klyatskin, TMF, 176:3 (2013), 494–512 | DOI | DOI | MR | Zbl

[8] V. I. Klyatskin, Russ. J. Math. Phys., 20:3 (2013), 295–314 | DOI | MR | Zbl

[9] V. I. Klyatskin, PMM, 33:5 (1969), 889–891 | Zbl

[10] V. I. Klyatskin, Izv. RAN. Fiz. atm. i okeana, 31:6 (1995), 749–754

[11] V. Klyatskin, D. Gurarie, Phys. D, 98:2–4 (1996), 466–480 | DOI | MR | Zbl

[12] H. J. Hopfinger, F. K. Browand, Nature, 295 (1982), 393–394 | DOI

[13] B. M. Boubnov, G. S. Golitsyn, J. Fluid Mech., 167:6 (1986), 503–531 | DOI

[14] E. J. Hopfinger, “Turbulence and vortices in rotating fluids”, Theoretical and Applied Mechanics (Saint-Martin-d'Heres, France, August 21–27, 1988), eds. P. Germain, M. Piau, D. Caillerie, North-Holland, Amsterdam, 1989, 117–138 | DOI | MR

[15] B. M. Boubnov, G. S. Golitsyn, Convection in Rotating Fluids, Fluid Mechanics and Its Applications, 29, Kluwer, Dordrecht, 1995 | DOI | MR | Zbl

[16] V. I. Pavlov, D. Buisine, V. P. Goncharov, Nonlin. Proc. Geophys., 8 (2001), 9–19 | DOI

[17] S. Karimova, Adv. Space Res., 50:8 (2012), 1107–1124 | DOI

[18] A. A. Kurkin, E. N. Pelinovskii, Volny-ubiitsy: fakty, teoriya i modelirovanie, NNTU, N. Novgorod, 2004

[19] C. Kharif, E. Pelinovskyy, A. Slyunaen, Rogue Waves in the Ocean, Springer, Berlin, 2009 | MR | Zbl

[20] V. E. Zakharov, Bezumnye volny, , 2011; Волны-убийцы, , 2013 http://www.youtube.com/watch?v=Bt3ZOswGd-4http://www.zoomby.ru/watch/114832-academia

[21] V. P. Ruban, Pisma v ZhETF, 94:3 (2011), 194–198 | DOI

[22] V. P. Ruban, Pisma v ZhETF, 95:9 (2012), 550–556 | DOI

[23] V. P. Ruban, Pisma v ZhETF, 97:4 (2013), 215–220 | DOI | DOI

[24] V. P. Ruban, Pisma v ZhETF, 97:12 (2013), 788–792 | DOI | DOI