Anomalous waves as an~object of statistical topography: Problem statement
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 180 (2014) no. 1, pp. 112-124
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Based on ideas of statistical topography, we analyze the boundary-value problem of the appearance of anomalous large waves {(}rogue waves{\rm)} on the sea surface. The boundary condition for the sea surface is regarded as a closed stochastic quasilinear equation in the kinematic approximation. We obtain the stochastic Liouville equation, which underlies the derivation of an equation describing the joint probability density of fields of sea surface displacement and its gradient. We formulate the statistical problem with the stochastic topographic inhomogeneities of the sea bottom taken into account. It describes diffusion in the phase space, and its solution must answer the question whether information about the existence of anomalous large waves is contained in the quasilinear equation under consideration.
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Mots-clés : 
anomalous wave, rogue wave, Liouville equation
Keywords: stochastic topography.
                    
                  
                
                
                Keywords: stochastic topography.
@article{TMF_2014_180_1_a8,
     author = {V. I. Klyatskin},
     title = {Anomalous waves as an~object of statistical topography: {Problem} statement},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {112--124},
     publisher = {mathdoc},
     volume = {180},
     number = {1},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2014_180_1_a8/}
}
                      
                      
                    TY - JOUR AU - V. I. Klyatskin TI - Anomalous waves as an~object of statistical topography: Problem statement JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2014 SP - 112 EP - 124 VL - 180 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2014_180_1_a8/ LA - ru ID - TMF_2014_180_1_a8 ER -
V. I. Klyatskin. Anomalous waves as an~object of statistical topography: Problem statement. Teoretičeskaâ i matematičeskaâ fizika, Tome 180 (2014) no. 1, pp. 112-124. http://geodesic.mathdoc.fr/item/TMF_2014_180_1_a8/
