Scalar products in models with the $GL(3)$ trigonometric $R$-matrix: General case
Teoretičeskaâ i matematičeskaâ fizika, Tome 180 (2014) no. 1, pp. 51-71 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study quantum integrable models with the $GL(3)$ trigonometric $R$-matrix solvable by the nested algebraic Bethe ansatz and obtain an explicit representation for a scalar product of generic Bethe vectors in terms of a sum over partitions of Bethe parameters. This representation generalizes the known formula for scalar products in models with the $GL(3)$-invariant $R$-matrix.
Keywords: nested Bethe ansatz, Bethe vector, scalar products.
@article{TMF_2014_180_1_a4,
     author = {S. Z. Pakulyak and E. Ragoucy and N. A. Slavnov},
     title = {Scalar products in models with the~$GL(3)$ trigonometric $R$-matrix: {General} case},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {51--71},
     year = {2014},
     volume = {180},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2014_180_1_a4/}
}
TY  - JOUR
AU  - S. Z. Pakulyak
AU  - E. Ragoucy
AU  - N. A. Slavnov
TI  - Scalar products in models with the $GL(3)$ trigonometric $R$-matrix: General case
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2014
SP  - 51
EP  - 71
VL  - 180
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2014_180_1_a4/
LA  - ru
ID  - TMF_2014_180_1_a4
ER  - 
%0 Journal Article
%A S. Z. Pakulyak
%A E. Ragoucy
%A N. A. Slavnov
%T Scalar products in models with the $GL(3)$ trigonometric $R$-matrix: General case
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2014
%P 51-71
%V 180
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2014_180_1_a4/
%G ru
%F TMF_2014_180_1_a4
S. Z. Pakulyak; E. Ragoucy; N. A. Slavnov. Scalar products in models with the $GL(3)$ trigonometric $R$-matrix: General case. Teoretičeskaâ i matematičeskaâ fizika, Tome 180 (2014) no. 1, pp. 51-71. http://geodesic.mathdoc.fr/item/TMF_2014_180_1_a4/

[1] E. K. Sklyanin, L. A. Takhtadzhyan, L. D. Faddeev, TMF, 40:2 (1979), 194–220 | DOI | MR

[2] L. D. Faddeev, “How the algebraic Bethe ansatz works for integrable models”, Symmétries quantiques [Quantum Symmetries], Proceedings of the Les Houches summer school, Session LXIV (Les Houches, France, August 1 – September 8, 1995), eds. A. Connes, K. Gawedzki, J. Zinn-Justin, North-Holland, Amsterdam, 1998, 149–219, arXiv: hep-th/9605187 | MR | Zbl

[3] P. P. Kulish, E. K. Sklyanin, Phys. Lett. A, 70:5–6 (1979), 461–463 | DOI | MR

[4] L. A. Takhtadzhyan, L. D. Faddeev, UMN, 34:5(209) (1979), 13–63 | DOI | MR

[5] S. Z. Pakulyak, E. Ragusi, N. A. Slavnov, TMF, 178:3 (2014), 363–389, arXiv: 1311.3500 | DOI

[6] V. E. Korepin, Commun. Math. Phys., 86:3 (1982), 391–418 | DOI | MR | Zbl

[7] A. G. Izergin, V. E. Korepin, Commun. Math. Phys., 94:1 (1984), 67–92 | DOI | MR | Zbl

[8] V. E. Korepin, Commun. Math. Phys., 94:1 (1984), 93–113 | DOI | MR | Zbl

[9] V. E. Korepin, N. M. Bogoliubov, A. G. Izergin, Quantum Inverse Scattering Method and Correlation Functions, Cambridge Univ. Press, Cambridge, 1993 | DOI | MR | Zbl

[10] N. A. Slavnov, TMF, 79:2 (1989), 232–240 | DOI | MR

[11] N. Kitanine, J. M. Maillet, V. Terras, Nucl. Phys. B, 567:3 (2000), 554–582, arXiv: math-ph/9907019 | DOI | MR | Zbl

[12] N. Kitanine, J. M. Maillet, N. A. Slavnov, V. Terras, Nucl. Phys. B, 641:3 (2002), 487–518, arXiv: hep-th/0201045 | DOI | MR | Zbl

[13] N. Kitanine, K. K. Kozlowski, J. M. Maillet, N. A. Slavnov, V. Terras, J. Stat. Mech., 04 (2009), P04003, 66 pp., arXiv: 0808.0227 | DOI | MR

[14] F. Göhmann, A. Klümper, A. Seel, J. Phys. A, 37:31 (2004), 7625–7651, arXiv: hep-th/0405089 | DOI | MR | Zbl

[15] F. Göhmann, A. Klümper, A. Seel, J. Phys. A, 38:9 (2006), 1833–1841, arXiv: cond-mat/0412062 | DOI | MR

[16] A. Seel, T. Bhattacharyya, F. Göhmann, A. Klümper, J. Stat. Mech., 08 (2007), P08030, 10 pp., arXiv: 0705.3569 | DOI | MR

[17] N. A. Slavnov, TMF, 82:3 (1990), 389–401 | DOI | MR

[18] A. G. Izergin, N. Kitanine, J. M. Maillet, V. Terras, Nucl. Phys. B, 554:3 (1999), 679–696, arXiv: solv-int/9812021 | DOI | MR | Zbl

[19] N. Kitanine, K. Kozlowski, J. M. Maillet, N. A. Slavnov, V. Terras, J. Stat. Mech., 05 (2011), P05028, 34 pp., arXiv: 1003.4557 | DOI

[20] N. Kitanine, K. K. Kozlowski, J. M. Maillet, N. A. Slavnov, V. Terras, J. Stat. Mech., 12 (2011), P12010, 28 pp., arXiv: 1110.0803 | DOI

[21] N. Kitanine, K. K. Kozlowski, J. M. Maillet, N. A. Slavnov, V. Terras, J. Stat. Mech., 09 (2012), P09001, 33 pp., arXiv: 1206.2630 | DOI | MR

[22] J.-S. Caux, J. M. Maillet, Phys. Rev. Lett., 95:7 (2005), 077201, 3 pp., arXiv: cond-mat/0502365 | DOI

[23] R. G. Pereira, J. Sirker, J.-S. Caux, R. Hagemans, J. M. Maillet, S. R. White, I. Affleck, Phys. Rev. Lett., 96:25 (2006), 257202, 4 pp., arXiv: cond-mat/0603681 | DOI

[24] R. G. Pereira, J. Sirker, J.-S. Caux, R. Hagemans, J. M. Maillet, S. R. White, I. Affleck, J. Stat. Mech., 08 (2007), P08022, 64 pp., arXiv: 0706.4327 | DOI | MR

[25] J.-S. Caux, P. Calabrese, N. A. Slavnov, J. Stat. Mech., 01 (2007), P01008, 20 pp., arXiv: cond-mat/0611321 | DOI

[26] N. Yu. Reshetikhin, Zap. nauchn. sem. LOMI, 150 (1986), 196–213 | DOI | MR

[27] M. Wheeler, Commun. Math. Phys., 327:3 (2014), 737–777, arXiv: 1204.2089 | DOI | MR | Zbl

[28] S. Belliard, S. Pakuliak, E. Ragoucy, N. A. Slavnov, J. Stat. Mech., 10 (2012), P10017, 25 pp., arXiv: 1207.0956 | DOI | MR

[29] S. Belliard, S. Pakuliak, E. Ragoucy, N. A. Slavnov, J. Stat. Mech., 04 (2013), P04033, 16 pp., arXiv: 1211.3968 | DOI | MR

[30] A. G. Izergin, Dokl. AN SSSR, 297:2 (1987), 331–333 | MR | Zbl

[31] P. P. Kulish, N. Yu. Reshetikhin, J. Phys. A, 16:16 (1983), L591–L596 | DOI | MR | Zbl

[32] P. P. Kulish, N. Yu. Reshetikhin, ZhETF, 80:1 (1981), 214–228 | MR

[33] P. P. Kulish, N. Yu. Reshetikhin, Zap. nauchn. sem. LOMI, 120 (1982), 92–121 | DOI | MR

[34] A. N. Varchenko, V. O. Tarasov, Algebra i analiz, 6:2 (1994), 90–137, arXiv: hep-th/9311040 | DOI | MR | Zbl

[35] S. Khoroshkin, S. Pakuliak, J. Math. Kyoto Univ., 48:2 (2008), 277–321, arXiv: 0711.2819 | DOI | MR | Zbl

[36] B. Enriquez, S. Khoroshkin, S. Pakuliak, Commun. Math. Phys., 276:3 (2007), 691–725 | DOI | MR | Zbl

[37] A. F. Oskin, S. Z. Pakulyak, A. V. Silantev, Algebra i analiz, 21:4 (2009), 196–240 | DOI | MR | Zbl

[38] S. Pakuliak, E. Ragoucy, N. A. Slavnov, J. Phys. A, 47:10 (2014), 105202, 16 pp., arXiv: 1310.3253 | DOI | MR | Zbl

[39] S. Pakuliak, E. Ragoucy, N. A. Slavnov, SIGMA, 9 (2013), 058, 23 pp., arXiv: 1304.7602 | DOI | MR | Zbl