Discrete equation on a square lattice with a nonstandard structure of generalized symmetries
Teoretičeskaâ i matematičeskaâ fizika, Tome 180 (2014) no. 1, pp. 17-34 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We clarify the integrability nature of a recently found discrete equation on the square lattice with a nonstandard symmetry structure. We find its $L$$A$ pair and show that it is also nonstandard. For this discrete equation, we construct the hierarchies of both generalized symmetries and conservation laws. This equation yields two integrable systems of hyperbolic type. The hierarchies of generalized symmetries and conservation laws are also nonstandard compared with known equations in this class.
Keywords: discrete integrable equation, generalized symmetry, conservation law
Mots-clés : $L$–$A$ pair.
@article{TMF_2014_180_1_a2,
     author = {R. N. Garifullin and A. V. Mikhailov and R. I. Yamilov},
     title = {Discrete equation on a~square lattice with a~nonstandard structure of generalized symmetries},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {17--34},
     year = {2014},
     volume = {180},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2014_180_1_a2/}
}
TY  - JOUR
AU  - R. N. Garifullin
AU  - A. V. Mikhailov
AU  - R. I. Yamilov
TI  - Discrete equation on a square lattice with a nonstandard structure of generalized symmetries
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2014
SP  - 17
EP  - 34
VL  - 180
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2014_180_1_a2/
LA  - ru
ID  - TMF_2014_180_1_a2
ER  - 
%0 Journal Article
%A R. N. Garifullin
%A A. V. Mikhailov
%A R. I. Yamilov
%T Discrete equation on a square lattice with a nonstandard structure of generalized symmetries
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2014
%P 17-34
%V 180
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2014_180_1_a2/
%G ru
%F TMF_2014_180_1_a2
R. N. Garifullin; A. V. Mikhailov; R. I. Yamilov. Discrete equation on a square lattice with a nonstandard structure of generalized symmetries. Teoretičeskaâ i matematičeskaâ fizika, Tome 180 (2014) no. 1, pp. 17-34. http://geodesic.mathdoc.fr/item/TMF_2014_180_1_a2/

[1] R. N. Garifullin, R. I. Yamilov, J. Phys. A, 45:34 (2012), 345205, 23 pp. | DOI | MR | Zbl

[2] D. Levi, M. Petrera, C. Scimiterna, R. Yamilov, SIGMA, 4 (2008), 077, 14 pp. | DOI | MR | Zbl

[3] D. Levi, R. I. Yamilov, J. Phys. A, 44:14 (2011), 145207, 22 pp., arXiv: 1011.0070 | DOI | MR | Zbl

[4] P. Xenitidis, “Integrability and symmetries of difference equations: the Adler–Bobenko–Suris case”, Group Analysis of Differential Equations and Integrable Systems (Protaras, Cyprus, October 26–30, 2008), University of Cyprus, Nicosia, 2009, 226–242, arXiv: 0902.3954 | MR | Zbl

[5] P. D. Xenitidis, V. G. Papageorgiou, J. Phys. A, 42:45 (2009), 454025, 13 pp. | DOI | MR | Zbl

[6] V. E. Adler, “On a discrete analog of the Tzitzeica equation”, arXiv: 1103.5139

[7] A. V. Mikhailov, P. Xenitidis, Lett. Math. Phys., 104:4 (2013), 431–450, arXiv: 1305.4347 | DOI | MR

[8] C. Scimiterna, M. Hay, D. Levi, On the integrability of a new lattice equation found by multiple scale analysis, arXiv: 1401.5691 | MR

[9] T. Tsuchida, J. Phys. A, 35:36 (2002), 7827–7847, arXiv: nlin/0105053 | DOI | MR | Zbl

[10] M. J. Ablowitz, A. Ramani, H. Segur, J. Math. Phys., 21:5 (1980), 1006–1015 | DOI | MR | Zbl

[11] V. S. Gerdjikov, M. I. Ivanov, Bulgar. J. Phys., 10:2 (1983), 130–143 | MR

[12] V. E. Adler, A. B. Shabat, R. I. Yamilov, TMF, 125:3 (2000), 355–424 | DOI | DOI | MR | Zbl

[13] D. Levi, R. Yamilov, J. Math. Phys., 38:12 (1997), 6648–6674 | DOI | MR | Zbl

[14] R. I. Yamilov, UMN, 38:1(229) (1983), 155–156 | MR

[15] R. Yamilov, J. Phys. A, 39:45 (2006), R541–R623 | DOI | MR | Zbl

[16] G. Tzitzéica, Rendiconti del Circolo Matematico di Palermo, 25:1 (1907), 180–187 | DOI

[17] A. V. Mikhailov, Pisma v ZhETF, 30:7 (1979), 443–448

[18] O. I. Bogoyavlensky, Phys. Lett. A, 134:1 (1988), 34–38 | DOI | MR

[19] Y. Itoh, Proc. Japan Acad., 51 (1975), 374–379 | DOI | MR | Zbl

[20] K. Narita, J. Phys. Soc. Japan, 51:5 (1982), 1682–1685 | DOI | MR

[21] A. V. Mikhailov, “Formal diagonalisation of Darboux transformation and conservation laws of integrable PDEs, PD$\Delta$Es, and P$\Delta$Es”, Doklad na Mezhdunarodnom nauchnom seminare “Geometricheskie struktury v integriruemykh sistemakh” (Moskva, MGU, 30 oktyabrya – 2 noyabrya 2012), 2012; . http://www.mathnet.ru/php/presentation.phtml?option_lang=eng&presentid=5934

[22] I. T. Khabibullin, M. V. Yangubaeva, TMF, 177:3 (2013), 441–467 | DOI | DOI

[23] V. Vazov, Asimptoticheskie razlozheniya reshenii obyknovennykh differentsialnykh uravnenii, Mir, M., 1968

[24] V. G. Drinfeld, V. V. Sokolov, “Algebry Li i uravneniya tipa Kortevega–de Friza”, Itogi nauki i tekhn. Ser. Sovrem. probl. matem. Nov. dostizh., 24, VINITI, M., 1984, 81–180 | DOI | MR | Zbl

[25] A. V. Mikhailov, Dzh. P. Vang, P. Ksenitidis, TMF, 167:1 (2011), 23–49 | DOI | DOI | MR | Zbl

[26] F. Khanizade, A. V. Mikhailov, Dzh. P. Vang, TMF, 177:3 (2013), 387–440 | DOI | DOI | Zbl

[27] R. I. Yamilov, TMF, 151:1 (2007), 66–80 | DOI | DOI | MR | Zbl

[28] A. B. Shabat, R. I. Yamilov, Algebra i analiz, 2:2 (1990), 183–208 | MR | Zbl