Asymptotic form of the spectrum of operators associated with $p$-adic fields
Teoretičeskaâ i matematičeskaâ fizika, Tome 180 (2014) no. 1, pp. 3-9
Cet article a éte moissonné depuis la source Math-Net.Ru
We consider a locally compact nonconnected nondiscrete field and study a linear operator given by the sum of the operator of multiplication by a function and the operator of convolution with a generalized function. We derive the asymptotic form of the spectrum of that linear operator. In this problem, we use the generalized $p$-adic Feynman–Kac formula.
Keywords:
asymptotic form, spectrum, operator trace, $p$-adic field.
Mots-clés : Feynman–Kac formula
Mots-clés : Feynman–Kac formula
@article{TMF_2014_180_1_a0,
author = {R. S. Ismagilov},
title = {Asymptotic form of the~spectrum of operators associated with $p$-adic fields},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {3--9},
year = {2014},
volume = {180},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2014_180_1_a0/}
}
R. S. Ismagilov. Asymptotic form of the spectrum of operators associated with $p$-adic fields. Teoretičeskaâ i matematičeskaâ fizika, Tome 180 (2014) no. 1, pp. 3-9. http://geodesic.mathdoc.fr/item/TMF_2014_180_1_a0/
[1] G. V. Rozenblyum, M. Z. Solomyak, M. A. Shubin, Differentsialnye uravneniya s chastnymi proizvodnymi – 7. Spektralnaya teoriya differentsialnykh operatorov, Itogi nauki i tekhn. Ser. Sovrem. probl. matem. Fundam. napravleniya, 64, VINITI, M., 1989 | MR | Zbl
[2] R. S. Ismagilov, TMF, 89:1 (1991), 18–24 | DOI | MR | Zbl
[3] V. S. Vladimirov, I. V. Volovich, E. I. Zelenov, Izv. AN SSSR. Ser. matem., 54:2 (1990), 275–302 | DOI | MR | Zbl
[4] I. J. Schoenberg, Trans. Amer. Math. Soc., 44:3 (1938), 522–536 | DOI | MR | Zbl
[5] I. S. Iokhvidov, M. G. Krein, Tr. MMO, 8 (1959), 413–496 | MR | Zbl
[6] M. Rid, B. Saimon, Metody sovremennoi matematicheskoi fiziki, v. 2, Garmonicheskii analiz. Samosopryazhennost, Mir, M., 1978 | MR | Zbl