Asymptotic form of the~spectrum of operators associated with $p$-adic fields
Teoretičeskaâ i matematičeskaâ fizika, Tome 180 (2014) no. 1, pp. 3-9

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a locally compact nonconnected nondiscrete field and study a linear operator given by the sum of the operator of multiplication by a function and the operator of convolution with a generalized function. We derive the asymptotic form of the spectrum of that linear operator. In this problem, we use the generalized $p$-adic Feynman–Kac formula.
Keywords: asymptotic form, spectrum, operator trace, $p$-adic field.
Mots-clés : Feynman–Kac formula
@article{TMF_2014_180_1_a0,
     author = {R. S. Ismagilov},
     title = {Asymptotic form of the~spectrum of operators associated with $p$-adic fields},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {3--9},
     publisher = {mathdoc},
     volume = {180},
     number = {1},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2014_180_1_a0/}
}
TY  - JOUR
AU  - R. S. Ismagilov
TI  - Asymptotic form of the~spectrum of operators associated with $p$-adic fields
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2014
SP  - 3
EP  - 9
VL  - 180
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2014_180_1_a0/
LA  - ru
ID  - TMF_2014_180_1_a0
ER  - 
%0 Journal Article
%A R. S. Ismagilov
%T Asymptotic form of the~spectrum of operators associated with $p$-adic fields
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2014
%P 3-9
%V 180
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2014_180_1_a0/
%G ru
%F TMF_2014_180_1_a0
R. S. Ismagilov. Asymptotic form of the~spectrum of operators associated with $p$-adic fields. Teoretičeskaâ i matematičeskaâ fizika, Tome 180 (2014) no. 1, pp. 3-9. http://geodesic.mathdoc.fr/item/TMF_2014_180_1_a0/