Asymptotic form of the spectrum of operators associated with $p$-adic fields
Teoretičeskaâ i matematičeskaâ fizika, Tome 180 (2014) no. 1, pp. 3-9 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a locally compact nonconnected nondiscrete field and study a linear operator given by the sum of the operator of multiplication by a function and the operator of convolution with a generalized function. We derive the asymptotic form of the spectrum of that linear operator. In this problem, we use the generalized $p$-adic Feynman–Kac formula.
Keywords: asymptotic form, spectrum, operator trace, $p$-adic field.
Mots-clés : Feynman–Kac formula
@article{TMF_2014_180_1_a0,
     author = {R. S. Ismagilov},
     title = {Asymptotic form of the~spectrum of operators associated with $p$-adic fields},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {3--9},
     year = {2014},
     volume = {180},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2014_180_1_a0/}
}
TY  - JOUR
AU  - R. S. Ismagilov
TI  - Asymptotic form of the spectrum of operators associated with $p$-adic fields
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2014
SP  - 3
EP  - 9
VL  - 180
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2014_180_1_a0/
LA  - ru
ID  - TMF_2014_180_1_a0
ER  - 
%0 Journal Article
%A R. S. Ismagilov
%T Asymptotic form of the spectrum of operators associated with $p$-adic fields
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2014
%P 3-9
%V 180
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2014_180_1_a0/
%G ru
%F TMF_2014_180_1_a0
R. S. Ismagilov. Asymptotic form of the spectrum of operators associated with $p$-adic fields. Teoretičeskaâ i matematičeskaâ fizika, Tome 180 (2014) no. 1, pp. 3-9. http://geodesic.mathdoc.fr/item/TMF_2014_180_1_a0/

[1] G. V. Rozenblyum, M. Z. Solomyak, M. A. Shubin, Differentsialnye uravneniya s chastnymi proizvodnymi – 7. Spektralnaya teoriya differentsialnykh operatorov, Itogi nauki i tekhn. Ser. Sovrem. probl. matem. Fundam. napravleniya, 64, VINITI, M., 1989 | MR | Zbl

[2] R. S. Ismagilov, TMF, 89:1 (1991), 18–24 | DOI | MR | Zbl

[3] V. S. Vladimirov, I. V. Volovich, E. I. Zelenov, Izv. AN SSSR. Ser. matem., 54:2 (1990), 275–302 | DOI | MR | Zbl

[4] I. J. Schoenberg, Trans. Amer. Math. Soc., 44:3 (1938), 522–536 | DOI | MR | Zbl

[5] I. S. Iokhvidov, M. G. Krein, Tr. MMO, 8 (1959), 413–496 | MR | Zbl

[6] M. Rid, B. Saimon, Metody sovremennoi matematicheskoi fiziki, v. 2, Garmonicheskii analiz. Samosopryazhennost, Mir, M., 1978 | MR | Zbl