Asymptotic form of the~spectrum of operators associated with $p$-adic fields
Teoretičeskaâ i matematičeskaâ fizika, Tome 180 (2014) no. 1, pp. 3-9
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider a locally compact nonconnected nondiscrete field and study a linear operator given by the sum of the operator of multiplication by a function and the operator of convolution with a generalized function. We derive the asymptotic form of the spectrum of that linear operator. In this problem, we use the generalized $p$-adic Feynman–Kac formula.
Keywords:
asymptotic form, spectrum, operator trace, $p$-adic field.
Mots-clés : Feynman–Kac formula
Mots-clés : Feynman–Kac formula
@article{TMF_2014_180_1_a0,
author = {R. S. Ismagilov},
title = {Asymptotic form of the~spectrum of operators associated with $p$-adic fields},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {3--9},
publisher = {mathdoc},
volume = {180},
number = {1},
year = {2014},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2014_180_1_a0/}
}
TY - JOUR AU - R. S. Ismagilov TI - Asymptotic form of the~spectrum of operators associated with $p$-adic fields JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2014 SP - 3 EP - 9 VL - 180 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2014_180_1_a0/ LA - ru ID - TMF_2014_180_1_a0 ER -
R. S. Ismagilov. Asymptotic form of the~spectrum of operators associated with $p$-adic fields. Teoretičeskaâ i matematičeskaâ fizika, Tome 180 (2014) no. 1, pp. 3-9. http://geodesic.mathdoc.fr/item/TMF_2014_180_1_a0/