Elastic scattering and the path integral
Teoretičeskaâ i matematičeskaâ fizika, Tome 179 (2014) no. 3, pp. 367-386 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

From the stationary Schrödinger equation in the framework of nonrelativistic quantum mechanics, we derive a representation of the elastic scattering amplitude in the form of a path integral. For evaluating the path integrals, we propose a method called unitary approximation. We obtain the scattering lengths and cross sections for a rectangular potential, a singular repulsive potential, and the Yukawa potential and compare with the exact results.
Keywords: quantum mechanics, elastic scattering, path integral.
@article{TMF_2014_179_3_a5,
     author = {G. V. Efimov},
     title = {Elastic scattering and the~path integral},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {367--386},
     year = {2014},
     volume = {179},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2014_179_3_a5/}
}
TY  - JOUR
AU  - G. V. Efimov
TI  - Elastic scattering and the path integral
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2014
SP  - 367
EP  - 386
VL  - 179
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2014_179_3_a5/
LA  - ru
ID  - TMF_2014_179_3_a5
ER  - 
%0 Journal Article
%A G. V. Efimov
%T Elastic scattering and the path integral
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2014
%P 367-386
%V 179
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2014_179_3_a5/
%G ru
%F TMF_2014_179_3_a5
G. V. Efimov. Elastic scattering and the path integral. Teoretičeskaâ i matematičeskaâ fizika, Tome 179 (2014) no. 3, pp. 367-386. http://geodesic.mathdoc.fr/item/TMF_2014_179_3_a5/

[1] R. P. Feinman, A. Khibs, Kvantovaya mekhanika i integraly po traektoriyam, Mir, M., 1968 | MR | Zbl

[2] H. Kleinert, Path Integrals in Quantum Mechanics, Statistics, Polymer Physics and Financial Marketing, World Sci., Singapore, 2006 | MR

[3] Zh. Zinn-Zhyustin, Kontinualnyi integral v kvantovoi mekhanike, Fizmatlit, M., 2006 | MR | Zbl

[4] A. Das, Field Theory. A Path Integral Approach, World Sci., Singapore, 2006 | MR | Zbl

[5] B. M. Barbashov, V. V. Nesterenko, TMF, 4:3 (1970), 293–300 ; 14:1 (1973), 27–35 ; Б. М. Барбашов, ЯФ, 20 (1974), 218–222 | DOI | DOI

[6] C. Chiou-Lahanas, G. A. Diamandis, B. C. Georgalas, X. N. Maintas, E. Papantonopoulos, Phys. Rev. D, 52:10 (1995), 5877–5882, arXiv: hep-th/9506059 | DOI | MR

[7] J. Rembielinski, Quantization of the tachyonic field and the preferred frame, arXiv: hep-ph/9509219

[8] J. Carron, R. Rosenfelder, Phys. Lett. A, 375:43 (2011), 3781–3785, arXiv: 1107.3034 | DOI | MR | Zbl

[9] R. Rosenfelder, Scattering theory with path integrals, arXiv: 1302.3419 | MR

[10] D. I. Blokhintsev, B. M. Barbashov, UFN, 106:4 (1972), 593–646 | DOI | DOI

[11] B. M. Barbashov, S. P. Kuleshov, V. A. Matveev, V. N. Pervushin, A. N. Sisakyan, A. N. Tavkhelidze, TMF, 5:3 (1970), 330–342 ; Б. М. Барбашов, Д. И. Блохинцев, В. В. Нестеренко, В. Н. Первушин, ЭЧАЯ, 4:3 (1973), 623–661 | DOI | MR

[12] J. L. Basdevant, J. Dalibard, Quantum Mechanics, Springer, Berlin, 2005 | MR | Zbl

[13] G. V. Efimov, TMF, 171:3 (2012), 452–474 | DOI | DOI | Zbl

[14] V. Dineykhan, G. V. Efimov, G. Ganbold, S. N. Nedelko, Oscillator representation in quantun physics, Lecture Notes in Physics. New Series m: Monographs, 26, Springer, Berlin, 1995 | Zbl

[15] G. V. Efimov, Metod funktsionalnogo integrirovaniya, Mezhdunarodnyi universitet prirody, obschestva i cheloveka “Dubna”, Dubna, 2008

[16] Z. Flyugge, Zadachi po kvantovoi mekhanike, Mir, M., 1974 | MR