Elastic scattering and the~path integral
Teoretičeskaâ i matematičeskaâ fizika, Tome 179 (2014) no. 3, pp. 367-386

Voir la notice de l'article provenant de la source Math-Net.Ru

From the stationary Schrödinger equation in the framework of nonrelativistic quantum mechanics, we derive a representation of the elastic scattering amplitude in the form of a path integral. For evaluating the path integrals, we propose a method called unitary approximation. We obtain the scattering lengths and cross sections for a rectangular potential, a singular repulsive potential, and the Yukawa potential and compare with the exact results.
Keywords: quantum mechanics, elastic scattering, path integral.
@article{TMF_2014_179_3_a5,
     author = {G. V. Efimov},
     title = {Elastic scattering and the~path integral},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {367--386},
     publisher = {mathdoc},
     volume = {179},
     number = {3},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2014_179_3_a5/}
}
TY  - JOUR
AU  - G. V. Efimov
TI  - Elastic scattering and the~path integral
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2014
SP  - 367
EP  - 386
VL  - 179
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2014_179_3_a5/
LA  - ru
ID  - TMF_2014_179_3_a5
ER  - 
%0 Journal Article
%A G. V. Efimov
%T Elastic scattering and the~path integral
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2014
%P 367-386
%V 179
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2014_179_3_a5/
%G ru
%F TMF_2014_179_3_a5
G. V. Efimov. Elastic scattering and the~path integral. Teoretičeskaâ i matematičeskaâ fizika, Tome 179 (2014) no. 3, pp. 367-386. http://geodesic.mathdoc.fr/item/TMF_2014_179_3_a5/