@article{TMF_2014_179_3_a3,
author = {O. V. Ilyin},
title = {Symmetries, the~current function, and exact solutions for {Broadwell's} two-dimensional stationary kinetic model},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {350--359},
year = {2014},
volume = {179},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2014_179_3_a3/}
}
TY - JOUR AU - O. V. Ilyin TI - Symmetries, the current function, and exact solutions for Broadwell's two-dimensional stationary kinetic model JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2014 SP - 350 EP - 359 VL - 179 IS - 3 UR - http://geodesic.mathdoc.fr/item/TMF_2014_179_3_a3/ LA - ru ID - TMF_2014_179_3_a3 ER -
%0 Journal Article %A O. V. Ilyin %T Symmetries, the current function, and exact solutions for Broadwell's two-dimensional stationary kinetic model %J Teoretičeskaâ i matematičeskaâ fizika %D 2014 %P 350-359 %V 179 %N 3 %U http://geodesic.mathdoc.fr/item/TMF_2014_179_3_a3/ %G ru %F TMF_2014_179_3_a3
O. V. Ilyin. Symmetries, the current function, and exact solutions for Broadwell's two-dimensional stationary kinetic model. Teoretičeskaâ i matematičeskaâ fizika, Tome 179 (2014) no. 3, pp. 350-359. http://geodesic.mathdoc.fr/item/TMF_2014_179_3_a3/
[1] S. K. Godunov, U. M. Sultangazin, UMN, 26:3(159) (1971), 3–51 | DOI | MR | Zbl
[2] A. V. Bobylev, G. Spiga, J. Phys. A, 27:22 (1994), 7451–7459 | DOI | MR | Zbl
[3] A. V. Bobylev, G. Caraffini, G. Spiga, Eur. J. Mech. B/Fluids, 19:2 (2000), 303–315 | DOI | MR | Zbl
[4] A. V. Bobylev, Math. Methods Appl. Sci., 19:10 (1996), 825–845 | 3.0.CO;2-1 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[5] O. Ilyin, J. Stat. Phys., 146:1 (2012), 67–72 | DOI | MR | Zbl
[6] O. Lindblom, N. Eiler, TMF, 131:2 (2002), 179–193 | DOI | DOI | MR | Zbl
[7] O. V. Ilin, TMF, 170:3 (2012), 481–488 | DOI | DOI
[8] H. Cabannes, Eur. J. Mech. B/Fluids, 16:1 (1997), 1–15 | MR | Zbl
[9] V. V. Zharinov, Lecture Notes on Geometrical Aspects of Partial Differential Equations, Series on Soviet and East European Mathematics, 9, World Sci., Singapore, 1992 | MR | Zbl
[10] N. H. Ibragimov, Transformation Groups Applied to Mathematical Physics, Reidel, Dordrecht, 1985 | MR | Zbl
[11] P. Olver, Prilozheniya grupp Li k differentsialnym uravneniyam, Mir, M., 1989 | DOI | MR | Zbl
[12] I. S. Krasil'shchik, P. H. M. Kersten, Symmetries and Recursion Operators for Classical and Supersymmetric Differential Equations, Mathematics and its Applications, 507, Kluwer, Dordrecht, 2000 | MR | Zbl
[13] C. Cercignani, R. Illner, M. Shinbrot, Commun. Math. Phys., 114:4 (1988), 687–698 | DOI | MR | Zbl
[14] P. J. Olver, Appl. Numer. Math., 10:3–4 (1992), 307–324 | DOI | MR | Zbl
[15] P. J. Olver, E. M. Vorob'ev, “Nonclassical and conditional symmetries”, CRC Handbook of Lie Group Analysis of Differential Equations, v. 3, New Trends in Theoretical Developments and Computational Methods, ed. N. H. Ibragimov, CRC Press, Boca Raton, FL, 1996, 291–328 | MR | Zbl
[16] P. J. Olver, P. Rosenau, SIAM J. Appl. Math., 47:2 (1987), 263–278 | DOI | MR | Zbl
[17] P. A. Clarkson, M. D. Kruskal, J. Math. Phys., 30:10 (1989), 2201–2213 | DOI | MR | Zbl