Quasiperiodic solutions of the~discrete Chen--Lee--Liu hierarchy
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 179 (2014) no. 3, pp. 317-349
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Using the Lax matrix and elliptic variables, we decompose the discrete Chen–Lee–Liu hierarchy into solvable ordinary differential equations. Based on the theory of the algebraic curve, we straighten the continuous and discrete flows related to the discrete Chen–Lee–Liu hierarchy in Abel–Jacobi coordinates. We introduce the meromorphic function $\phi$, Baker–Akhiezer vector $\bar\psi$, and hyperelliptic curve $\mathcal{K}_N$ according to whose asymptotic properties and the algebro-geometric characters we construct quasiperiodic solutions of the discrete Chen–Lee–Liu hierarchy.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
discrete Chen–Lee–Liu equation
Mots-clés : quasiperiodic solution.
                    
                  
                
                
                Mots-clés : quasiperiodic solution.
@article{TMF_2014_179_3_a2,
     author = {X. Zeng and X. Geng},
     title = {Quasiperiodic solutions of the~discrete {Chen--Lee--Liu} hierarchy},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {317--349},
     publisher = {mathdoc},
     volume = {179},
     number = {3},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2014_179_3_a2/}
}
                      
                      
                    X. Zeng; X. Geng. Quasiperiodic solutions of the~discrete Chen--Lee--Liu hierarchy. Teoretičeskaâ i matematičeskaâ fizika, Tome 179 (2014) no. 3, pp. 317-349. http://geodesic.mathdoc.fr/item/TMF_2014_179_3_a2/
