Rational interpolation and solitons
Teoretičeskaâ i matematičeskaâ fizika, Tome 179 (2014) no. 3, pp. 303-316 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the general construction scheme for second-order spectral problems, for which the semiclassical approximation is exact. We show that the inverse spectral problem in this case reduces to the classical interpolation problem for meromorphic functions.
Keywords: inverse spectral problem, semiclassical approximation, interpolation of meromorphic functions.
@article{TMF_2014_179_3_a1,
     author = {A. B. Shabat},
     title = {Rational interpolation and solitons},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {303--316},
     year = {2014},
     volume = {179},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2014_179_3_a1/}
}
TY  - JOUR
AU  - A. B. Shabat
TI  - Rational interpolation and solitons
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2014
SP  - 303
EP  - 316
VL  - 179
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2014_179_3_a1/
LA  - ru
ID  - TMF_2014_179_3_a1
ER  - 
%0 Journal Article
%A A. B. Shabat
%T Rational interpolation and solitons
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2014
%P 303-316
%V 179
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2014_179_3_a1/
%G ru
%F TMF_2014_179_3_a1
A. B. Shabat. Rational interpolation and solitons. Teoretičeskaâ i matematičeskaâ fizika, Tome 179 (2014) no. 3, pp. 303-316. http://geodesic.mathdoc.fr/item/TMF_2014_179_3_a1/

[1] E. Hille, Ordinary Differential Equations in the Complex Domain, John Wiley Sons, New York–London–Sydney, 1976 | MR | Zbl

[2] A. B. Shabat, “Ob odnoi interpolyatsionnoi zadache”, Doklad na X Mezhdunarodnoi nauchnoi konferentsii “Poryadkovyi analiz i smezhnye voprosy matematicheskogo modelirovaniya” (14–20 iyulya 2013, Vladikavkaz – Nov. Tsei, Rossiya)

[3] A. B. Shabat, “Symmetries of Spectral Problems”, Integrability, Lecture Notes in Physics, 767, ed. A. V. Mikhailov, Springer, Berlin, 2009, 139–173 | DOI | MR | Zbl

[4] V. E. Adler, A. B. Shabat, TMF, 153:1 (2007), 29–45 | DOI | DOI | MR | Zbl

[5] L. Martines Alonso, A. B. Shabat, TMF, 140:2 (2004), 216–229 | DOI | DOI | MR

[6] B. A. Dubrovin, V. B. Matveev, S. P. Novikov, UMN, 31:1(187) (1976), 55–136 | DOI | MR | Zbl

[7] G. A. Baker, Jr., P. Graves-Morris, “Extensions of Padé approximants”, Padé Approximants, Encyclopedia of Mathematics and its Applications, 59, Cambridge Univ. Press, Cambridge, 1996, 335–414 | DOI | MR | Zbl

[8] J. Drach, Compt. Rend. Acad. Sci., 168 (1919), 337–340 | Zbl

[9] A. B. Shabat, “O potentsialakh s nulevym koeffitsientom otrazheniya”, Dinamika sploshnoi sredy, v. 5, Institut gidrodinamiki SO AN SSSR, Novosibirsk, 1970, 130–145

[10] V. E. Adler, “$N$-solitonnoe reshenie uravneniya Kortevega–de Friza”, Asimptoticheskie metody matematicheskoi fiziki, BNTs UrO AN SSSR, Ufa, 1989, 3–8

[11] D. H. Peregrine, J. Austral. Math. Soc. Ser. B, 25:1 (1983), 16–43 | DOI | MR | Zbl

[12] V. E. Zakharov, A. A. Gelash, Phys. Rev. Lett., 111:7 (2013), 054101 | DOI

[13] V. E. Zakharov, A. B. Shabat, ZhETF, 61:1 (1971), 118–134 | MR

[14] V. E. Zakharov, A. B. Shabat, ZhETF, 64:5 (1973), 1627–1639