Jacobi-type identities in algebras and superalgebras
Teoretičeskaâ i matematičeskaâ fizika, Tome 179 (2014) no. 2, pp. 196-206 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We introduce two remarkable identities written in terms of single commutators and anticommutators for any three elements of an arbitrary associative algebra. One is a consequence of the other (fundamental identity). From the fundamental identity, we derive a set of four identities (one of which is the Jacobi identity) represented in terms of double commutators and anticommutators. We establish that two of the four identities are independent and show that if the fundamental identity holds for an algebra, then the multiplication operation in that algebra is associative. We find a generalization of the obtained results to the super case and give a generalization of the fundamental identity in the case of arbitrary elements. For nondegenerate even symplectic (super)manifolds, we discuss analogues of the fundamental identity.
Keywords: associative algebra, associative superalgebra, Jacobi identity, symplectic supermanifold.
@article{TMF_2014_179_2_a2,
     author = {P. M. Lavrov and O. V. Radchenko and I. V. Tyutin},
     title = {Jacobi-type identities in algebras and superalgebras},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {196--206},
     year = {2014},
     volume = {179},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2014_179_2_a2/}
}
TY  - JOUR
AU  - P. M. Lavrov
AU  - O. V. Radchenko
AU  - I. V. Tyutin
TI  - Jacobi-type identities in algebras and superalgebras
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2014
SP  - 196
EP  - 206
VL  - 179
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2014_179_2_a2/
LA  - ru
ID  - TMF_2014_179_2_a2
ER  - 
%0 Journal Article
%A P. M. Lavrov
%A O. V. Radchenko
%A I. V. Tyutin
%T Jacobi-type identities in algebras and superalgebras
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2014
%P 196-206
%V 179
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2014_179_2_a2/
%G ru
%F TMF_2014_179_2_a2
P. M. Lavrov; O. V. Radchenko; I. V. Tyutin. Jacobi-type identities in algebras and superalgebras. Teoretičeskaâ i matematičeskaâ fizika, Tome 179 (2014) no. 2, pp. 196-206. http://geodesic.mathdoc.fr/item/TMF_2014_179_2_a2/

[1] V. I. Arnold, Matematicheskie metody klassicheskoi mekhaniki, Nauka, M., 1989 | DOI | MR | Zbl

[2] N. N. Bogolyubov, D. V. Shirkov, Vvedenie v teoriyu kvantovykh polei, Nauka, M., 1984 | MR | MR

[3] I. A. Batalin, G. A. Vilkovisky, Phys. Lett. B, 69:3 (1977), 309–312 | DOI | MR

[4] I. A. Batalin, E. S. Fradkin, Phys. Lett. B, 122:2 (1983), 157–164 | DOI | MR | Zbl

[5] D. M. Gitman, I. V. Tyutin, Kanonicheskoe kvantovanie polei so svyazyami, Nauka, M., 1986 | MR | Zbl

[6] M. Henneaux, C. Teitelboim, Quantization of Gauge Systems, Princeton Univ. Press, Princeton, 1992 | MR | Zbl

[7] D. A. Leites, UMN, 35:1(211) (1980), 3–57 | DOI | MR | Zbl

[8] B. DeWitt, Supermanifolds, Cambridge Univ. Press, Cambridge, 1992 | MR | Zbl

[9] I. A. Batalin, G. A. Vilkovisky, Phys. Lett. B, 102:1 (1981), 27–31 | DOI | MR

[10] M. Markl, E. Remm, J. Algebra, 299:1 (2006), 171–189 | DOI | MR | Zbl

[11] J.-L. Loday, B. Vallette, Algebraic Operads, Grundlehren der Mathematischen Wissenschaften, 346, Springer, Berlin, 2012 | DOI | MR | Zbl

[12] I. A. Batalin, G. A. Vilkovisky, Phys. Rev. D, 28:10 (1983), 2567–2582 | DOI | MR

[13] C. Buttin, C. R. Acad. Sci. Paris. Sér. A, 269:1 (1969), 87–89 | MR | Zbl

[14] F. Wever, Math. Ann., 120:1 (1949), 563–580 | DOI | MR | Zbl

[15] D. Blessnohl, H. Laue, Note di Matematika, 8:1 (1988), 111–121 | MR