Euler integral symmetries for the confluent Heun equation and symmetries of the Painlevé equation PV
Teoretičeskaâ i matematičeskaâ fizika, Tome 179 (2014) no. 2, pp. 189-195 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Euler integral symmetries relate solutions of ordinary linear differential equations and generate integral representations of the solutions in several cases or relations between solutions of constrained equations. These relations lead to the corresponding symmetries of the monodromy matrices for the differential equations. We discuss Euler symmetries in the case of the deformed confluent Heun equation, which is in turn related to the Painlevé equation PV. The existence of symmetries of the linear equations leads to the corresponding symmetries of the Painlevé equation of the Okamoto type. The choice of the system of linear equations that reduces to the deformed confluent Heun equation is the starting point for the constructions. The basic technical problem is to choose the bijective relation between the system parameters and the parameters of the deformed confluent Heun equation. The solution of this problem is quite large, and we use the algebraic computing system Maple for this.
Mots-clés : confluent Heun equation, monodromy
Keywords: Euler integral transform, apparent singularity.
@article{TMF_2014_179_2_a1,
     author = {A. Ya. Kazakov and S. Yu. Slavyanov},
     title = {Euler integral symmetries for the~confluent {Heun} equation and symmetries of {the~Painlev\'e} equation {PV}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {189--195},
     year = {2014},
     volume = {179},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2014_179_2_a1/}
}
TY  - JOUR
AU  - A. Ya. Kazakov
AU  - S. Yu. Slavyanov
TI  - Euler integral symmetries for the confluent Heun equation and symmetries of the Painlevé equation PV
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2014
SP  - 189
EP  - 195
VL  - 179
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2014_179_2_a1/
LA  - ru
ID  - TMF_2014_179_2_a1
ER  - 
%0 Journal Article
%A A. Ya. Kazakov
%A S. Yu. Slavyanov
%T Euler integral symmetries for the confluent Heun equation and symmetries of the Painlevé equation PV
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2014
%P 189-195
%V 179
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2014_179_2_a1/
%G ru
%F TMF_2014_179_2_a1
A. Ya. Kazakov; S. Yu. Slavyanov. Euler integral symmetries for the confluent Heun equation and symmetries of the Painlevé equation PV. Teoretičeskaâ i matematičeskaâ fizika, Tome 179 (2014) no. 2, pp. 189-195. http://geodesic.mathdoc.fr/item/TMF_2014_179_2_a1/

[1] S. Yu. Slavyanov, W. Lay, Special Functions. A Unified Theory Based on Singularities, Oxford Univ. Press, Oxford, 2000 | MR | Zbl

[2] A. Ya. Kazakov, S. Yu. Slavyanov, TMF, 155:2 (2008), 252–264 | DOI | DOI | MR | Zbl

[3] Y. Sibuya, Linear Differential Equations in the Complex Domain: Problems of Analytic Continuation, Translations of Mathematical Monographs, 82, AMS, Providence, RI, 1990 | MR | Zbl

[4] K. Okamoto, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 33:3 (1986), 575–618 | MR | Zbl

[5] K. Takemura, SIGMA, 5 (2009), 040, 22 pp. | DOI | MR | Zbl

[6] A. Ya. Kazakov, TMF, 116:3 (1998), 323–335 | DOI | DOI | MR | Zbl

[7] A. Ya. Kazakov, J. Phys. A, 39:10 (2006), 2339–2348 | DOI | MR | Zbl

[8] K. Iwasaki, H. Kimura, S. Shimomura, M. Yosida, From Gauss to Painlevé: A Modern Theory of Special Functions, Aspects of Mathematics, E16, Vieweg Sohn, Braunschweig, 1991 | DOI | MR | Zbl