Euler integral symmetries for the~confluent Heun equation and symmetries of the~Painlev\'e equation PV
Teoretičeskaâ i matematičeskaâ fizika, Tome 179 (2014) no. 2, pp. 189-195
Voir la notice de l'article provenant de la source Math-Net.Ru
Euler integral symmetries relate solutions of ordinary linear differential equations and generate integral representations of the solutions in several cases or relations between solutions of constrained equations. These relations lead to the corresponding symmetries of the monodromy matrices for the differential equations. We discuss Euler symmetries in the case of the deformed confluent Heun equation, which is in turn related to the Painlevé equation PV. The existence of symmetries of the linear equations leads to the corresponding symmetries of the Painlevé equation of the Okamoto type. The choice of the system of linear equations that reduces to the deformed confluent Heun equation is the starting point for the constructions. The basic technical problem is to choose the bijective relation between the system parameters and the parameters of the deformed confluent Heun equation. The solution of this problem is quite large, and we use the algebraic computing system Maple for this.
Mots-clés :
confluent Heun equation, monodromy
Keywords: Euler integral transform, apparent singularity.
Keywords: Euler integral transform, apparent singularity.
@article{TMF_2014_179_2_a1,
author = {A. Ya. Kazakov and S. Yu. Slavyanov},
title = {Euler integral symmetries for the~confluent {Heun} equation and symmetries of {the~Painlev\'e} equation {PV}},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {189--195},
publisher = {mathdoc},
volume = {179},
number = {2},
year = {2014},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2014_179_2_a1/}
}
TY - JOUR AU - A. Ya. Kazakov AU - S. Yu. Slavyanov TI - Euler integral symmetries for the~confluent Heun equation and symmetries of the~Painlev\'e equation PV JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2014 SP - 189 EP - 195 VL - 179 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2014_179_2_a1/ LA - ru ID - TMF_2014_179_2_a1 ER -
%0 Journal Article %A A. Ya. Kazakov %A S. Yu. Slavyanov %T Euler integral symmetries for the~confluent Heun equation and symmetries of the~Painlev\'e equation PV %J Teoretičeskaâ i matematičeskaâ fizika %D 2014 %P 189-195 %V 179 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/TMF_2014_179_2_a1/ %G ru %F TMF_2014_179_2_a1
A. Ya. Kazakov; S. Yu. Slavyanov. Euler integral symmetries for the~confluent Heun equation and symmetries of the~Painlev\'e equation PV. Teoretičeskaâ i matematičeskaâ fizika, Tome 179 (2014) no. 2, pp. 189-195. http://geodesic.mathdoc.fr/item/TMF_2014_179_2_a1/