Keywords: Euler integral transform, apparent singularity.
@article{TMF_2014_179_2_a1,
author = {A. Ya. Kazakov and S. Yu. Slavyanov},
title = {Euler integral symmetries for the~confluent {Heun} equation and symmetries of {the~Painlev\'e} equation {PV}},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {189--195},
year = {2014},
volume = {179},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2014_179_2_a1/}
}
TY - JOUR AU - A. Ya. Kazakov AU - S. Yu. Slavyanov TI - Euler integral symmetries for the confluent Heun equation and symmetries of the Painlevé equation PV JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2014 SP - 189 EP - 195 VL - 179 IS - 2 UR - http://geodesic.mathdoc.fr/item/TMF_2014_179_2_a1/ LA - ru ID - TMF_2014_179_2_a1 ER -
%0 Journal Article %A A. Ya. Kazakov %A S. Yu. Slavyanov %T Euler integral symmetries for the confluent Heun equation and symmetries of the Painlevé equation PV %J Teoretičeskaâ i matematičeskaâ fizika %D 2014 %P 189-195 %V 179 %N 2 %U http://geodesic.mathdoc.fr/item/TMF_2014_179_2_a1/ %G ru %F TMF_2014_179_2_a1
A. Ya. Kazakov; S. Yu. Slavyanov. Euler integral symmetries for the confluent Heun equation and symmetries of the Painlevé equation PV. Teoretičeskaâ i matematičeskaâ fizika, Tome 179 (2014) no. 2, pp. 189-195. http://geodesic.mathdoc.fr/item/TMF_2014_179_2_a1/
[1] S. Yu. Slavyanov, W. Lay, Special Functions. A Unified Theory Based on Singularities, Oxford Univ. Press, Oxford, 2000 | MR | Zbl
[2] A. Ya. Kazakov, S. Yu. Slavyanov, TMF, 155:2 (2008), 252–264 | DOI | DOI | MR | Zbl
[3] Y. Sibuya, Linear Differential Equations in the Complex Domain: Problems of Analytic Continuation, Translations of Mathematical Monographs, 82, AMS, Providence, RI, 1990 | MR | Zbl
[4] K. Okamoto, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 33:3 (1986), 575–618 | MR | Zbl
[5] K. Takemura, SIGMA, 5 (2009), 040, 22 pp. | DOI | MR | Zbl
[6] A. Ya. Kazakov, TMF, 116:3 (1998), 323–335 | DOI | DOI | MR | Zbl
[7] A. Ya. Kazakov, J. Phys. A, 39:10 (2006), 2339–2348 | DOI | MR | Zbl
[8] K. Iwasaki, H. Kimura, S. Shimomura, M. Yosida, From Gauss to Painlevé: A Modern Theory of Special Functions, Aspects of Mathematics, E16, Vieweg Sohn, Braunschweig, 1991 | DOI | MR | Zbl