Differential hierarchy and additional grading of knot polynomials
Teoretičeskaâ i matematičeskaâ fizika, Tome 179 (2014) no. 2, pp. 147-188

Voir la notice de l'article provenant de la source Math-Net.Ru

Colored knot polynomials have a special $Z$-expansion in certain combinations of differentials, which depend on the representation. The expansion coefficients are functions of three variables $A$, $q$, and $t$ and can be regarded as new distinguished coordinates on the space of knot polynomials, analogous to the coefficients of the alternative character expansion. These new variables decompose especially simply when the representation is embedded into a product of fundamental representations. The recently proposed fourth grading is seemingly a simple redefinition of these new coordinates, elegant, but in no way distinguished. If this is so, then it does not provide any new independent knot invariants, but it can instead be regarded as one more piece of evidence in support of a hidden differential hierarchy $(Z$-expansion{)} structure behind the knot polynomials.
Keywords: Chern–Simons theory, colored knot invariant
Mots-clés : superpolynomial.
@article{TMF_2014_179_2_a0,
     author = {S. B. Arthamonov and A. D. Mironov and A. Yu. Morozov},
     title = {Differential hierarchy and additional grading of knot polynomials},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {147--188},
     publisher = {mathdoc},
     volume = {179},
     number = {2},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2014_179_2_a0/}
}
TY  - JOUR
AU  - S. B. Arthamonov
AU  - A. D. Mironov
AU  - A. Yu. Morozov
TI  - Differential hierarchy and additional grading of knot polynomials
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2014
SP  - 147
EP  - 188
VL  - 179
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2014_179_2_a0/
LA  - ru
ID  - TMF_2014_179_2_a0
ER  - 
%0 Journal Article
%A S. B. Arthamonov
%A A. D. Mironov
%A A. Yu. Morozov
%T Differential hierarchy and additional grading of knot polynomials
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2014
%P 147-188
%V 179
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2014_179_2_a0/
%G ru
%F TMF_2014_179_2_a0
S. B. Arthamonov; A. D. Mironov; A. Yu. Morozov. Differential hierarchy and additional grading of knot polynomials. Teoretičeskaâ i matematičeskaâ fizika, Tome 179 (2014) no. 2, pp. 147-188. http://geodesic.mathdoc.fr/item/TMF_2014_179_2_a0/