Mots-clés : superpolynomial.
@article{TMF_2014_179_2_a0,
author = {S. B. Arthamonov and A. D. Mironov and A. Yu. Morozov},
title = {Differential hierarchy and additional grading of knot polynomials},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {147--188},
year = {2014},
volume = {179},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2014_179_2_a0/}
}
TY - JOUR AU - S. B. Arthamonov AU - A. D. Mironov AU - A. Yu. Morozov TI - Differential hierarchy and additional grading of knot polynomials JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2014 SP - 147 EP - 188 VL - 179 IS - 2 UR - http://geodesic.mathdoc.fr/item/TMF_2014_179_2_a0/ LA - ru ID - TMF_2014_179_2_a0 ER -
S. B. Arthamonov; A. D. Mironov; A. Yu. Morozov. Differential hierarchy and additional grading of knot polynomials. Teoretičeskaâ i matematičeskaâ fizika, Tome 179 (2014) no. 2, pp. 147-188. http://geodesic.mathdoc.fr/item/TMF_2014_179_2_a0/
[1] J. W. Alexander, Trans. Amer. Math. Soc., 30:2 (1928), 275–306 ; J. H. Conway, “An enumeration of knots and links, and some of their algebraic properties”, Computational Problems in Abstract Algebra (Oxford, 29 August –2 September, 1967), ed. J. Leech, Pergamon, Oxford, 1970, 329–358 ; V. F. R. Jones, Invent. Math., 72:1 (1983), 1–25 ; Bull. Amer. Math. Soc. (N. S.), 12:1 (1985), 103–111 ; Ann. Math. (2), 126:2 (1987), 335–388 ; L. Kauffman, Topology, 26:3 (1987), 395–407 ; P. Freyd, D. Yetter, J. Hoste, W. B. R. Lickorish, K. Millet, A. Ocneanu, Bull. Amer. Math. Soc. (N. S.), 12:2 (1985), 239–246 ; J. H. Przytycki, K. P. Traczyk, Kobe J. Math., 4:2 (1987), 115–139 | DOI | MR | Zbl | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl | MR | Zbl
[2] S.-S. Chern, J. Simons, Ann. Math. (2), 99:1 (1974), 48–69 | DOI | MR | Zbl
[3] A. S. Schwarz, “New topological invariants arising in the theory of quantized fields”, International Conference on Topology, Abstracts (Part II) (Baku, 1987), Math. Institute, Aserbaijan Acad. Sci., Baku, 1987; E. Witten, Commun. Math. Phys., 121:3 (1989), 351–399 | DOI | MR | Zbl
[4] R. Gopakumar, C. Vafa, Adv. Theor. Math. Phys., 3:5 (1999), 1415–1443, arXiv: ; H. Ooguri, C. Vafa, Nucl. Phys. B, 577:3 (2000), 419–438, arXiv: ; J. Labastida, M. Mariño, Commun. Math. Phys., 217:2 (2001), 423–449, arXiv: ; M. Mariño, C. Vafa, Framed knots at large $N$, arXiv: ; S. Gukov, A. Schwarz, C. Vafa, Lett. Math. Phys., 74:1 (2005), 53–74, arXiv: hep-th/9811131hep-th/9912123hep-th/0004196hep-th/0108064hep-th/0412243 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl | MR | DOI | MR | Zbl
[5] M. Khovanov, Duke Math. J., 101:3 (2000), 359–426, arXiv: ; Exp. Math., 12:3 (2003), 365–374, arXiv: ; J. Knot Theory Ramifications, 14:1 (2005), 111–130, arXiv: ; Algebr. Geom. Topol., 4 (2004), 1045–1081, arXiv: math/9908171math/0201306math/0302060math/0304375 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl
[6] M. Khovanov, L. Rozhansky, Fund. Math., 199:1 (2008), 1–91, arXiv: ; Geom. Topol., 12:3 (2008), 1387–1425, arXiv: ; D. Bar-Natan, Algebr. Geom. Topol., 2 (2002), 337–370, arXiv: math.QA/0401268math.QA/0505056math/0201043 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl
[7] V. Dolotin, A. Morozov, JHEP, 01 (2013), 065, 46 pp., arXiv: 1208.4994 | DOI | MR
[8] N. M. Dunfield, S. Gukov, J. Rasmussen, Exp. Math., 15 (2006), 129–159, arXiv: math/0505662 | DOI | MR | Zbl
[9] H. Itoyama, A. Mironov, A. Morozov, And. Morozov, Internat. J. Modern Phys. A, 27:19 (2012), 1250099, 85 pp., arXiv: ; 28:3–4 (2013), 1340009, 81 pp. ; A. Anokhina, A. Mironov, A. Morozov, And. Morozov, Nucl. Phys. B, 868 (2013), 271–313, arXiv: ; A. Anokhina, A. Mironov, A. Morozov, And. Morozov, Adv. High Enegry Phys., 13 (2013), 931830, 12 pp., arXiv: 1204.47851207.02791304.1486 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR
[10] E. Guadagnini, M. Martellini, M. Mintchev, “Chern–Simons field theory and quantum groups”, Quantum groups, Proceedings of the 8th International Workshop on Mathematical Physics (Arnold Sommerfeld Institute, Clausthal, Germany, 19–26 July, 1989), Lecture Notes in Physics, 370, eds. H.-D. Doebner, J.-D. Hennig, Springer, Berlin, 307–317 ; Phys. Lett. B, 235:3–4 (1990), 275–281 ; N. Yu. Reshetikhin, V. G. Turaev, Commun. Math. Phys., 127:1 (1990), 1–26 ; A. Morozov, A. Smirnov, Nucl. Phys. B, 835:3 (2010), 284–313, arXiv: 1001.2003 | DOI | MR | Zbl | DOI | MR | DOI | MR | Zbl | DOI | MR | Zbl
[11] P. Dunin-Barkowski, A. Mironov, A. Morozov, A. Sleptsov, A. Smirnov, JHEP, 03 (2013), 021, 85 pp., arXiv: 1106.4305 | DOI | MR
[12] A. Mironov, A. Morozov, And. Morozov, “Character expansion for HOMFLY polynomials. I. Integrability and difference equations”, Strings, Gauge Fields, and the Geometry Behind: The Legacy of Maximilian Kreuzer, eds. A. Rebhan, L. Katzarkov, J. Knapp, R. Rashkov, E. Scheidegger, World Sci., Singapore, 2013, 101–118, arXiv: 1112.5754 | MR | Zbl
[13] M. Aganagic, Sh. Shakirov, Knot homology from refined Chern-Simons theory, arXiv: 1105.5117
[14] I. Cherednik, Jones polynomials of torus knots via DAHA, arXiv: 1111.6195 | MR
[15] N. Carqueville, D. Murfet, Algebr. Geom. Topol., 14 (2014), 489–537, arXiv: ; A. Oblomkov, J. Rasmussen, V. Shende, The Hilbert scheme of a plane curve singularity and the HOMFLY homology of its link, arXiv: ; E. Gorsky, A. Oblomkov, J. Rasmussen, V. Shende, Torus knots and the rational DAHA, arXiv: 1108.10811201.21151207.4523 | DOI | MR | Zbl | MR | MR
[16] S. Gukov, M. Stosic, Homological algebra of knots and BPS states, arXiv: 1112.0030 | MR
[17] A. Mironov, A. Morozov, And. Morozov, “Evolution method and “differential hierarchy” of colored knot polynomials”, Nonlinear and modern mathematical physics, Proceedings of the 2nd International Workshop (Tampa, Florida, USA, 9–11 March, 2013), AIP Conference Proceedings, 1562, eds. W.-X. Ma, D. Kaup, AIP, Melville, NY, 2013, 123–155, arXiv: 1306.3197 | DOI
[18] E. Gorsky, “$q,t$-Catalan numbers and knot homology”, Zeta Functions in Algebra and Geometry, Contemporary Mathematics, 566, ed. A. Campillo, AMS, Providence, RI, 2012, 213–232, arXiv: 1003.0916 | DOI | MR | Zbl
[19] A. Negut, Moduli of flags of sheaves on $P^2$ and their K-theory, arXiv: 1209.4242 | MR
[20] H. Itoyama, A. Mironov, A. Morozov, And. Morozov, JHEP, 07 (2012), 131, 21 pp., arXiv: 1203.5978 | DOI | MR
[21] S. Nawata, P. Ramadevi, Zodinmawia, X. Sun, JHEP, 11 (2012), 157, 38 pp., arXiv: ; H. Fuji, S. Gukov, M. Stosic, P. Sulkowski, 3d analogs of Argyres–Douglas theories and knot homologies, arXiv: 1209.14091209.1416 | DOI | MR
[22] H. Fuji, S. Gukov, P. Sulkowski, Volume conjecture: refined and categorified, arXiv: 1203.2182
[23] A. Anokhina, A. Mironov, A. Morozov, And. Morozov, Knot polynomials in the first non-symmetric representation, arXiv: 1211.6375 | MR
[24] E. Gorsky, S. Gukov, M. Stosic, Quadruply-graded colored homology of knots, arXiv: 1304.3481
[25] A. Mironov, A. Morozov, And. Morozov, JHEP, 03 (2012), 034, 34 pp., arXiv: 1112.2654 | DOI
[26] R. Gelca, Math. Proc. Cambridge Philos. Soc., 133:2 (2002), 311–323, arXiv: ; R. Gelca, J. Sain, J. Knot Theory Ramifications, 12:2 (2003), 187–201, arXiv: ; S. Gukov, Commun. Math. Phys., 255:3 (2005), 577–627, arXiv: ; S. Garoufalidis, “On the characteristic and deformation varieties of a knot”, Proceedings of the Casson Fest (Fayetteville, AR, USA, April 10–12, 2003), Geometry and Topology Monographs, 7, eds. C. Gordon, Y. Rieck, Geom. Topol. Publ., Coventry, 2004, 291–309, arXiv: ; H. Fuji, S. Gukov, P. Sułkowski, Super-$A$-polynomial for knots and BPS states, arXiv: math/0004158math/0201100hep-th/0306165math/03062301205.1515 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl
[27] A. Mironov, A. Morozov, “Equations on knot polynomials and 3d/5d duality”, The Sixth International School on Field Theory and Gravitation – 2012 (Petrópolis, RJ, Brazil 23–27 April, 2012), AIP Conference Proceedings, 1483, eds. W. A. Rodrigues, Jr., R. Kerner, G. O. Pires, C. Pinheiro, AIP, Melville, NY, 2012, 189–211, arXiv: 1208.2282 | DOI
[28] M. Rosso, V. Jones, J. Knot Theory Ramifications, 2:1 (1993), 97–112 ; X.-S. Lin, H. Zheng, Trans. Amer. Math. Soc., 362:1 (2010), 1–18, arXiv: ; S. Stevan, Ann. Henri Poincaré, 11 (2010), 1201–1224, arXiv: ; A. Brini, B. Eynard, M. Mariño, Ann. Henri Poincaré, 13:8 (2012), 1873–1910, arXiv: math/06012671003.28611105.2012 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl
[29] A. Morozov, JHEP, 12 (2012), 116, 7 pp., arXiv: ; The first-order deviation of superpolynomial in an arbitrary representation from the special polynomial, arXiv: ; Письма в ЖЭТФ, 97:3–4 (2013), 195–196 1208.35441211.4596 | DOI | MR | DOI | DOI
[30] A. S. Anokhina, A. A. Morozov, TMF, 178:1 (2014), 3–68 | DOI | DOI | MR | Zbl
[31] M. Kontsevich, “Vassiliev's Knot Invariants”, I. M. Gel'fand Seminar, Advances in Soviet Mathematics, 16, Part 2, eds. S. I. Gel'fand, S. G. Gindikin, AMS, Providence, RI, 1993, 137–150 ; M. Alvarez, J. M. F. Labastida, E. Perez, Nucl. Phys. B, 488:3 (1997), 677–718, arXiv: ; S. Chmutov, S. Duzhin, J. Mostovoy, Introduction to Vassiliev Knot Invariants, Cambridge Univ. Press, Cambridge, 2012, arXiv: hep-th/96070301103.5628 | MR | DOI | MR | Zbl | DOI | MR
[32] A. D. Mironov, A. Yu. Morozov, A. V. Sleptsov, TMF, 177:2 (2013), 179–221, arXiv: 1303.1015 | DOI | DOI | Zbl
[33] A. Mironov, A. Morozov, Sh. Shakirov, A. Sleptsov, JHEP, 12 (2012), 70, 12 pp., arXiv: 1201.3339 | DOI
[34] A. Mironov, A. Morozov, Sh. Shakirov, J. Phys. A, 45:35 (2012), 355202, 11 pp., arXiv: 1203.0667 | DOI | MR | Zbl