Calculation of spectral dependence of Anderson criterion for 1D system with correlated diagonal disorder
Teoretičeskaâ i matematičeskaâ fizika, Tome 179 (2014) no. 1, pp. 134-144 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the problem of calculating the Anderson criterion for a one-dimensional disordered chain with correlated disorder. We solve this problem by the perturbation method with the inverse correlation length as the small parameter. We show that in a correlated system, the degree of localization not only naturally decreases but its spectral dependence also differs significantly from the spectral dependence in uncorrelated chains. The calculations are based on the method for constructing joint statistics of Green's functions, which was previously used to analyze uncorrelated one-dimensional systems. We illustrate the theoretical calculations with a numerical experiment.
Keywords: Anderson localization, correlated disorder, Green's function.
@article{TMF_2014_179_1_a8,
     author = {G. G. Kozlov},
     title = {Calculation of spectral dependence of {Anderson} criterion for {1D} system with correlated diagonal disorder},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {134--144},
     year = {2014},
     volume = {179},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2014_179_1_a8/}
}
TY  - JOUR
AU  - G. G. Kozlov
TI  - Calculation of spectral dependence of Anderson criterion for 1D system with correlated diagonal disorder
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2014
SP  - 134
EP  - 144
VL  - 179
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2014_179_1_a8/
LA  - ru
ID  - TMF_2014_179_1_a8
ER  - 
%0 Journal Article
%A G. G. Kozlov
%T Calculation of spectral dependence of Anderson criterion for 1D system with correlated diagonal disorder
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2014
%P 134-144
%V 179
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2014_179_1_a8/
%G ru
%F TMF_2014_179_1_a8
G. G. Kozlov. Calculation of spectral dependence of Anderson criterion for 1D system with correlated diagonal disorder. Teoretičeskaâ i matematičeskaâ fizika, Tome 179 (2014) no. 1, pp. 134-144. http://geodesic.mathdoc.fr/item/TMF_2014_179_1_a8/

[1] V. A. Malyshev, A. Rodriguez, F. Dominguez-Adame, Phys. Rev. B, 60:20 (1999), 14140–14146 | DOI

[2] F. A. B. F. de Moura, M. L. Lyra, Phys. Rev. Lett., 81:17 (1998), 3735–3738 | DOI

[3] D. H. Dunlap, H-L. Wu, P. W. Phillips, Phys. Rev. Lett., 65:1 (1990), 88–91 | DOI

[4] I. M. Lifshits, S. A. Gredeskul, L. A. Pastur, Vvedenie v teoriyu neuporyadochennykh sistem, Nauka, M., 1982 | MR | MR

[5] F. M. Izrailev, A. A. Krokhin, N. M. Makarov, Phys. Rep., 512:3 (2012), 125–254, arXiv: 1110.1762 | DOI | MR

[6] M. Titov, H. Schomerus, Phys. Rev. Lett., 95:12 (2005), 126602, 4 pp. | DOI

[7] L. I. Deych, M. V. Erementchouk, A. A. Lisyansky, Physica B, 338:1–4 (2003), 79–81 | DOI

[8] A. Croy, P. Cain, M. Schreiber, Europ. Phys. J. B, 82:2 (2011), 107–112 | DOI | MR

[9] G. Theodorou, M. H. Cohen, Phys. Rev. B, 13:10 (1976), 4597–4601 | DOI

[10] G. G. Kozlov, The watching operators method in the theory of Frenkel exciton. Novel criterion of localization and its exact calculation for the non diagonal disordered 1D chain's zero-state, arXiv: cond-mat/9909335

[11] P. W. Anderson, Phys. Rev., 109:5 (1958), 1492–1505 | DOI

[12] F. J. Dyson, Phys. Rev., 92:6 (1953), 1331–1338 | DOI | MR | Zbl

[13] H. Schmidt, Phys. Rev., 105:2 (1957), 425–441 | DOI | MR | Zbl

[14] G. G. Kozlov, TMF, 140:2 (2004), 337–352 | DOI | DOI | MR

[15] G. G. Kozlov, TMF, 162:2 (2010), 285–303 | DOI | DOI | MR | Zbl

[16] G. G. Kozlov, Appl. Math., 2:8 (2011), 965–974 | DOI

[17] G. G. Kozlov, TMF, 171:1 (2012), 124–134 | DOI | DOI | Zbl

[18] G. G. Kozlov, Spectral dependence of degree of localization of eigenfunctions of the 1D Schrodinger equation with a peacewise-constant random potential, arXiv: 1105.2678

[19] G. G. Kozlov, Spectrum and eigen functions of the operator $H_Uf(x)\equiv f(U-1/x)/x^2$ and strange attractor's density for the mapping $x_{n+1}=1/(U-x_n)$, arXiv: 0803.1920