Dynamical phase transition in the simplest molecular chain model
Teoretičeskaâ i matematičeskaâ fizika, Tome 179 (2014) no. 1, pp. 123-133 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the dynamics of the simplest chain of a large number $N$ of particles. In the double scaling limit, we find the partition of the parameter space into two domains: for one domain, the supremum over the time interval $(0,\infty)$ of the relative extension of the chain tends to $1$ as $N\to\infty$, and for the other domain, to infinity.
Keywords: statistical physics, double scaling limit, dynamical phase transition, Hooke's law, molecular chain.
@article{TMF_2014_179_1_a7,
     author = {V. A. Malyshev and S. A. Muzychka},
     title = {Dynamical phase transition in the~simplest molecular chain model},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {123--133},
     year = {2014},
     volume = {179},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2014_179_1_a7/}
}
TY  - JOUR
AU  - V. A. Malyshev
AU  - S. A. Muzychka
TI  - Dynamical phase transition in the simplest molecular chain model
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2014
SP  - 123
EP  - 133
VL  - 179
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2014_179_1_a7/
LA  - ru
ID  - TMF_2014_179_1_a7
ER  - 
%0 Journal Article
%A V. A. Malyshev
%A S. A. Muzychka
%T Dynamical phase transition in the simplest molecular chain model
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2014
%P 123-133
%V 179
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2014_179_1_a7/
%G ru
%F TMF_2014_179_1_a7
V. A. Malyshev; S. A. Muzychka. Dynamical phase transition in the simplest molecular chain model. Teoretičeskaâ i matematičeskaâ fizika, Tome 179 (2014) no. 1, pp. 123-133. http://geodesic.mathdoc.fr/item/TMF_2014_179_1_a7/

[1] O. Penrose, Markov Process. and Related Fields, 8:2 (2002), 351–364 | MR | Zbl

[2] M. Kardar, Problems and Solutions for Statistical Physics, MIT, Cambridge, 2008

[3] V. A. Malyshev, Mosc. Math. J., 6:2 (2006), 353–358 | MR | Zbl

[4] G. Gallavotti (ed.), The Fermi–Pasta–Ulam Problem. A Status Report, Lecture Notes in Physics, 728, Springer, Berlin, 2008 | DOI | MR | Zbl

[5] O. Braun, Yu. Kivshar, Model Frenkelya–Kontorovoi. Kontseptsii, metody, prilozheniya, Fizmatlit, M., 2008 | MR | Zbl

[6] A. Braides, M. Solci, E. Vitali, Netw. Heterog. Media, 2:3 (2007), 551–567 | DOI | MR | Zbl

[7] J. Braun, B. Schmidt, On the passage from atomistic systems to nonlinear elasticity theory, arXiv: 1107.4155

[8] E. Weinan, P. Ming, Arch. Ration. Mech. Anal., 183:2 (2007), 241–297 | DOI | MR | Zbl

[9] E. Weinan, P. Ming, Acta Math. Appl. Sin. Engl. Ser., 24:4 (2007), 529–550 | DOI | MR

[10] M. Born, Kh. Kun, Dinamicheskaya teoriya kristallicheskikh reshetok, IL, M., 1958 | Zbl

[11] A. Niven, Chisla ratsionalnye i irratsionalnye, Mir, M., 1966 | MR | Zbl

[12] G. H. Hardy, E. M. Wright, An Introduction to the Theory of Numbers, Clarendon Press, Oxford, 1975 | MR | Zbl