@article{TMF_2014_179_1_a7,
author = {V. A. Malyshev and S. A. Muzychka},
title = {Dynamical phase transition in the~simplest molecular chain model},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {123--133},
year = {2014},
volume = {179},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2014_179_1_a7/}
}
V. A. Malyshev; S. A. Muzychka. Dynamical phase transition in the simplest molecular chain model. Teoretičeskaâ i matematičeskaâ fizika, Tome 179 (2014) no. 1, pp. 123-133. http://geodesic.mathdoc.fr/item/TMF_2014_179_1_a7/
[1] O. Penrose, Markov Process. and Related Fields, 8:2 (2002), 351–364 | MR | Zbl
[2] M. Kardar, Problems and Solutions for Statistical Physics, MIT, Cambridge, 2008
[3] V. A. Malyshev, Mosc. Math. J., 6:2 (2006), 353–358 | MR | Zbl
[4] G. Gallavotti (ed.), The Fermi–Pasta–Ulam Problem. A Status Report, Lecture Notes in Physics, 728, Springer, Berlin, 2008 | DOI | MR | Zbl
[5] O. Braun, Yu. Kivshar, Model Frenkelya–Kontorovoi. Kontseptsii, metody, prilozheniya, Fizmatlit, M., 2008 | MR | Zbl
[6] A. Braides, M. Solci, E. Vitali, Netw. Heterog. Media, 2:3 (2007), 551–567 | DOI | MR | Zbl
[7] J. Braun, B. Schmidt, On the passage from atomistic systems to nonlinear elasticity theory, arXiv: 1107.4155
[8] E. Weinan, P. Ming, Arch. Ration. Mech. Anal., 183:2 (2007), 241–297 | DOI | MR | Zbl
[9] E. Weinan, P. Ming, Acta Math. Appl. Sin. Engl. Ser., 24:4 (2007), 529–550 | DOI | MR
[10] M. Born, Kh. Kun, Dinamicheskaya teoriya kristallicheskikh reshetok, IL, M., 1958 | Zbl
[11] A. Niven, Chisla ratsionalnye i irratsionalnye, Mir, M., 1966 | MR | Zbl
[12] G. H. Hardy, E. M. Wright, An Introduction to the Theory of Numbers, Clarendon Press, Oxford, 1975 | MR | Zbl