Energies of weakly bound and near-threshold resonance states of a quantum particle in a two-dimensional plane
Teoretičeskaâ i matematičeskaâ fizika, Tome 179 (2014) no. 1, pp. 102-122 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We assume that a slow quantum particle moves in a two-dimensional plane of a three-dimensional coordinate space and its motion occurs in the field of a central short-range potential. We show that the approximate energies of weakly bound and near-threshold resonance states of this particle are defined by the roots of transcendental equations with two parameters: the scattering length and the effective radius. We find the sufficient conditions for solvability of these equations and study the dependence of their solutions on the parameters.
Keywords: two-dimensional scattering, effective radius approximation, near-threshold resonance state, weakly bound state.
@article{TMF_2014_179_1_a6,
     author = {V. V. Pupyshev},
     title = {Energies of weakly bound and near-threshold resonance states of a~quantum particle in a~two-dimensional plane},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {102--122},
     year = {2014},
     volume = {179},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2014_179_1_a6/}
}
TY  - JOUR
AU  - V. V. Pupyshev
TI  - Energies of weakly bound and near-threshold resonance states of a quantum particle in a two-dimensional plane
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2014
SP  - 102
EP  - 122
VL  - 179
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2014_179_1_a6/
LA  - ru
ID  - TMF_2014_179_1_a6
ER  - 
%0 Journal Article
%A V. V. Pupyshev
%T Energies of weakly bound and near-threshold resonance states of a quantum particle in a two-dimensional plane
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2014
%P 102-122
%V 179
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2014_179_1_a6/
%G ru
%F TMF_2014_179_1_a6
V. V. Pupyshev. Energies of weakly bound and near-threshold resonance states of a quantum particle in a two-dimensional plane. Teoretičeskaâ i matematičeskaâ fizika, Tome 179 (2014) no. 1, pp. 102-122. http://geodesic.mathdoc.fr/item/TMF_2014_179_1_a6/

[1] L. D. Landau, E. M. Lifshits, Teoreticheskaya fizika, v. 3, Kvantovaya mekhanika. Nerelyativistskaya teoriya, Nauka, M., 1974 | MR | Zbl

[2] Z. Flyugge, Zadachi po kvantovoi mekhanike, v. 1, Mir, M., 1974 | MR | Zbl

[3] V. de Alfaro, T. Redzhe, Potentsialnoe rasseyanie, Mir, M., 1966 | MR | Zbl

[4] Dzh. Teilor, Teoriya rasseyaniya. Kvantovaya teoriya nerelyativistskikh stolknovenii, Mir, M., 1975

[5] V. V. Babikov, Metod fazovykh funktsii v kvantovoi mekhanike, Nauka, M., 1976 | MR

[6] B. Simon, Ann. Phys., 97:2 (1976), 279–288 | DOI | MR | Zbl

[7] S. H. Patil, Phys. Rev. A, 22:6 (1980), 2400–2402 | DOI | MR

[8] Yu. Kagan, G. V. Shlyapnikov, I. A. Vartanyants, N. A. Glukhov, Pisma v ZhETF, 35:9 (1982), 386–390

[9] I. R. Lapidus, Amer. J. Phys., 50:1 (1982), 45–47 | DOI

[10] I. R. Lapidus, Amer. J. Phys., 54:5 (1986), 459–461 | DOI | MR

[11] S. K. Adhikari, Amer. J. Phys., 54:4 (1986), 362–366 | DOI | MR

[12] P. G. Averbuch, J. Phys. A, 19:12 (1986), 2325–2335 | DOI | MR

[13] B. J. Verhaar, J. P. H. W. van den Eijnde, M. A. J. Voermans, M. M. J. Schaffrath, J. Phys. A, 17:3 (1984), 595–598 | DOI

[14] B. J. Verhaar, L. P. H. de Goey, J. P. H. W van den Eijnde, E. J. D. Vredenbregt, Phys. Rev. A, 32:3 (1985), 1424–1429 | DOI

[15] D. Bollé, F. Gesztesy, Phys. Rev. Lett., 52:17 (1984), 1469–1472 | DOI

[16] D. Bollé, F. Gesztesy, Phys. Rev. A, 30:3 (1984), 1279–1293 | DOI

[17] S. K. Adhikari, W. G. Gibson, Phys. Rev. A, 46:7 (1992), 3967–3977 | DOI

[18] M. Randeria, J.-M. Duan, L.-Y. Shieh, Phys. Rev. B, 41:1 (1990), 327–343 | DOI

[19] V. S. Melezhik, J. Comp. Phys., 92:1 (1991), 67–81 | DOI | Zbl

[20] D. S. Petrov, M. Holzman, G. V. Shlyapnikov, Phys. Rev. Lett., 84:12 (2000), 2551–2555, arXiv: cond-mat/9909344 | DOI

[21] D. S. Petrov, G. V. Shlyapnikov, Phys. Rev. A, 64:1 (2001), 012706, 13 pp., arXiv: cond-mat/0012091 | DOI

[22] N. N. Khuri, A. Martin, J.-M. Rishard, T. T. Wu, J. Math. Phys., 50:7 (2009), 072105, 17 pp., arXiv: 0812.4054 | DOI | MR | Zbl

[23] M. Klawunn, A. Pikovski, L. Santos, Phys. Rev. A, 82:4 (2010), 044701, 4 pp., arXiv: 1008.2444 | DOI

[24] M. Rosenkrantz, W. Bao, Phys. Rev. A, 84:5 (2011), 050701(R), 5 pp. | DOI

[25] V. S. Melezhik, “Multi-channel computations in low-dimensional few-body physics”, Mathematical Modeling and Computational Science (Stara Lesna, Slovakia, July 4–8, 2011), Lecture Notes Computer Science, 7125, eds. G. Adam, J. Busa, M. Hnatic, Springer, Berlin, 2012, 94–107 | DOI | MR

[26] S. A. Rakityansky, N. Elander, J. Phys. A, 45:3 (2012), 135209, 28 pp., arXiv: 1201.0172 | DOI | MR | Zbl

[27] V. V. Pupyshev, Rasseyanie medlennoi kvantovoi chastitsy aksialno-simmetrichnym korotkodeistvuyuschim potentsialom, OIYaI P4-2012-119, OIYaI, Dubna, 2012

[28] G. Modugno, F. Ferlanio, R. Heidemann, G. Roati, M. Inguscio, Phys. Rev. A, 68:1 (2003), 011601(R), 4 pp., arXiv: cond-mat/0304242 | DOI

[29] P. Clade, C. Ryu, A. Ramanathan, K. Helmerson, W. D. Phillips, Phys. Rev. Lett., 102:17 (2009), 170401, 4 pp., arXiv: 0805.3519 | DOI

[30] L. D. Caar, D. DeMille, R. V. Krems, J. Ye, New J. Phys., 11 (2009), 055049, 87 pp. | DOI

[31] G. I. Marchuk, Metody vychislitelnoi matematiki, Nauka, M., 1989 | MR | Zbl | Zbl

[32] A. N. Kolmogorov, S. V. Fomin, Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1976 | MR | Zbl

[33] Dzh. Sansone, Obyknovennye differentsialnye uravneniya, v. 1, IL, M., 1953 | MR | MR | Zbl

[34] M. V. Fedoryuk, Asimptoticheskie metody dlya lineinykh obyknovennykh differentsialnykh uravnenii, Nauka, M., 1983 | DOI | MR

[35] G. N. Vatson, Teoriya besselevykh funktsii, 1, IL, M., 1949 | MR | MR | Zbl

[36] M. Abramovits, I. Stigan (red.), Spravochnik po spetsialnym funktsiyam s formulami, grafikami i matematicheskimi tablitsami, Nauka, M., 1979 | MR | MR | Zbl

[37] V. V. Pupyshev, Rasseyanie medlennoi kvantovoi chastitsy tsentralnym korotkodeistvuyuschim potentsialom, OIYaI P4-2012-101, OIYaI, Dubna, 2012

[38] V. V. Pupyshev, YaF, 76:2 (2013), 199–215 | DOI | DOI