Jordanian deformation of the open $s\ell(2)$ Gaudin model
Teoretičeskaâ i matematičeskaâ fizika, Tome 179 (2014) no. 1, pp. 90-101 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We derive a deformed $s\ell(2)$ Gaudin model with integrable boundaries. Starting from the Jordanian deformation of the $SL(2)$-invariant Yang $R$-matrix and generic solutions of the associated reflection equation and the dual reflection equation, we obtain the corresponding inhomogeneous spin-$1/2$ XXX chain. The semiclassical expansion of the transfer matrix yields the deformed $s\ell(2)$ Gaudin Hamiltonians with boundary terms.
Keywords: exactly solvable model, Gaudin model.
@article{TMF_2014_179_1_a5,
     author = {N. Cirilo Antonio and N. Manoilovich and Z. Nagy},
     title = {Jordanian deformation of the~open $s\ell(2)$ {Gaudin} model},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {90--101},
     year = {2014},
     volume = {179},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2014_179_1_a5/}
}
TY  - JOUR
AU  - N. Cirilo Antonio
AU  - N. Manoilovich
AU  - Z. Nagy
TI  - Jordanian deformation of the open $s\ell(2)$ Gaudin model
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2014
SP  - 90
EP  - 101
VL  - 179
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2014_179_1_a5/
LA  - ru
ID  - TMF_2014_179_1_a5
ER  - 
%0 Journal Article
%A N. Cirilo Antonio
%A N. Manoilovich
%A Z. Nagy
%T Jordanian deformation of the open $s\ell(2)$ Gaudin model
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2014
%P 90-101
%V 179
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2014_179_1_a5/
%G ru
%F TMF_2014_179_1_a5
N. Cirilo Antonio; N. Manoilovich; Z. Nagy. Jordanian deformation of the open $s\ell(2)$ Gaudin model. Teoretičeskaâ i matematičeskaâ fizika, Tome 179 (2014) no. 1, pp. 90-101. http://geodesic.mathdoc.fr/item/TMF_2014_179_1_a5/

[1] B. M. Garraway, Phil. Trans. R. Soc. London Ser. A, 369:1939 (2011), 1137–1155 | DOI | MR | Zbl

[2] N. M. Bogolyubov, P. P. Kulish, Zap. nauchn. sem. POMI, 398 (2012), 26–54 | DOI | MR

[3] L. Amico, A. Osterloh, Ann. Phys., 524:3–4 (2012), 133–145, arXiv: 1201.5851 | DOI | Zbl

[4] M. Gaudin, J. Physique, 37:10 (1976), 1087–1098 | DOI | MR

[5] M. Gaudin, La fonction d'onde de Bethe, Masson, Paris, 1983 | MR | Zbl

[6] E. K. Sklyanin, Zap. nauchn. sem. POMI, 164 (1987), 151–169 | MR

[7] M. A. Semenov-Tian-Shansky, “Quantum and classical integrable systems”, Integrability of Nonlinear Systems (Pondicherry, India, January 8–26, 1996), Lecture Notes in Physics, 495, eds. Y. Kosmann-Schwarzbach, B. Grammaticos, K. M. Tamizhmani, Springer, Berlin, 1997, 314–377 | DOI | MR | Zbl

[8] A. A. Belavin, V. G. Drinfeld, Funkts. analiz i ego pril., 16:3 (1982), 1–29 | DOI | MR | Zbl

[9] B. Jurčo, “Classical Yang-Baxter equations and quantum integrable systems (Gaudin models)”, Quantum Groups (Clausthal, Germany, 19–26 July, 1989), Lecture Notes in Physics, 370, eds. H.-D. Doebner, J.-D. Hennig, Springer, Berlin, 1990, 219–227 | DOI | MR | Zbl

[10] P. P. Kulish, N. Manojlović, J. Math. Phys., 42:10 (2001), 4757–4778, arXiv: nlin/0103010 | DOI | MR | Zbl

[11] P. P. Kulish, N. Manojlović, J. Math.Phys., 44:2 (2003), 676–700, arXiv: nlin/0204037 | DOI | MR | Zbl

[12] V. Kurak, A. Lima-Santos, Nucl. Phys. B, 701:3 (2004), 497–515, arXiv: nlin/0406025 | DOI | MR | Zbl

[13] H. M. Babujian, R. Flume, Modern Phys. Lett. A, 9:22 (1994), 2029–2039, arXiv: hep-th/9310110 | DOI | MR | Zbl

[14] B. Feigin, E. Frenkel, N. Reshetikhin, Commun. Math. Phys., 166:1 (1994), 27–62 | DOI | MR | Zbl

[15] N. Reshetikhin, A. Varchenko, “Quasiclassical asymptotics of solutions to the KZ equations”, Geometry, Topology and Physics, Conference Proceedings and Lecture Notes in Geometry and Topology, IV, ed. S.-T. Yau, Internat. Press, Cambridge, MA, 1995, 293–273 | MR

[16] E. K. Sklyanin, Lett. Math. Phys., 47:3 (1999), 275–292 | DOI | MR | Zbl

[17] T. Skrypnyk, J. Math. Phys., 50:3 (2009), 033540, 28 pp. | DOI | MR

[18] L. A. Takhtadzhyan, L. D. Faddeev, UMN, 34:5(209) (1979), 13–63 | DOI | MR

[19] P. P. Kulish, E. K. Sklyanin, “Quantum spectral transform method. Recent developments”, Integrable Quantum Field Theories (Tvärminne, Finland, 23–27 March, 1981), Lecture Notes in Physics, 151, eds. J. Hietarinta, C. Montonen, 1982, 61–119 | DOI | MR | Zbl

[20] L. D. Faddev, “How the algebraic Bethe ansatz works for integrable models”, Symétries quantiques (Les Houches, 1995), eds. A. Connes, K. Gawedzki, J. Zinn-Justin, North-Holland, Amsterdam, 1998, 149–219, arXiv: hep-th/9605187 | MR

[21] V. G. Drinfeld, “Quantum groups”, Proceedings of the International Congress of Mathematicians (Berkeley, CA, 1986), v. 1, ed. A. M. Gleason, AMS, Providence, RI, 1987, 798–820 | MR

[22] M. Jimbo, Lett. Math. Phys., 10:1 (1985), 63–69 | DOI | MR | Zbl

[23] V. G. Drinfeld, Algebra i analiz, 1:6 (1989), 114–148 | MR | Zbl

[24] P. P. Kulish, “Twist deformations of quantum integrable spin chains”, Noncommutative Spacetimes: Symmetries in Noncommutative Geometry and Field Theory, Lecture Notes in Physics, 774, eds. P. Aschieri, M. Dimitrijevic, P. Kulish, F. Lizzi, J. Wess, Springer, Berlin, 2009, 165–188 | DOI | MR

[25] M. Gestenhaber, A. Giaquinto, S. D. Schack, “Quantum symmetry”, Quantum Groups, Lecture Notes in Mathematics, 1510, ed. P. P. Kulish, Springer, Berlin, 1992, 9–46 | DOI | MR

[26] O. V. Ogievetsky, Rend. Circ. Mat. Palermo (2), 1994, Suppl. No. 37, 185–199 | MR | Zbl

[27] P. P. Kulish, V. D. Lyakhovsky, A. I. Mudrov, J. Math. Phys., 40:9 (1999), 4569–4568, arXiv: math/9806014 | DOI | MR

[28] P. P. Kulish, “Twisting of quantum groups and integrable systems”, Nonlinearity, Integrability and All That: Twenty Years After NEEDS ' 79 (Lecce, Italy, July 1–10, 1999), eds. M. Boiti, L. Martina, F. Pempinelli, B. Prinari, G. Soliani, World Sci., Singapore, 2000, 304–310 | DOI | MR | Zbl

[29] V. Chari, A. N. Pressley, A Guide to Quantum Groups, Cambridge Univ. Press, Cambridge, 1995 | MR | Zbl

[30] P. P. Kulish, A. A. Stolin, Czech. J. Phys., 47:12 (1997), 1207–1212 | DOI | MR | Zbl

[31] S. M. Khoroshkin, A. A. Stolin, V. N. Tolstoy, Comm. Algebra, 26 (1998), 1041–1055 | DOI | MR | Zbl

[32] P. P. Kulish, N. Manoilovich, Z. Nad, TMF, 163:2 (2010), 288–298, arXiv: 0911.5592 | DOI | DOI | MR | Zbl

[33] E. K. Sklyanin, J. Phys. A, 21:10 (1988), 2375–2389 | DOI | MR | Zbl

[34] I. V. Cherednik, TMF, 61:1 (1984), 35–44 | MR | Zbl

[35] P. P. Kulish, E. K. Sklyanin, J. Phys. A, 25:22 (1992), 5963–5975, arXiv: hep-th/9209054 | DOI | MR | Zbl

[36] L. Freidel, J. M. Maillet, Phys. Lett. B, 262:2–3 (1991), 278–284 | DOI | MR

[37] K. Hikami, P. P. Kulish, M. Wadati, Chaos, Solitons and Fractals, 2:5 (1992), 543–550 | DOI | MR | Zbl

[38] K. Hikami, P. P. Kulish, M. Wadati, J. Phys. Soc. Japan, 61:9 (1992), 3071–3076 | DOI | MR

[39] K. Hikami, J. Phys. A, 28:17 (1995), 4997–5007 | DOI | MR | Zbl

[40] W.-L. Yang, Y.-Z. Zhang, M. D. Gould, Nucl. Phys. B, 698:3 (2004), 503–516, arXiv: hep-th/0411048 | DOI | MR | Zbl

[41] W.-L. Yang, Y.-Z. Zhang, R. Sasaki, Nucl. Phys. B, 729 (2005), 594–610, arXiv: hep-th/0507148 | DOI | MR | Zbl

[42] N. Cirilo António, N. Manojlović, Z. Nagy, Rev. Math. Phys., 25:10 (2013), 1343004, 14 pp., arXiv: 1303.2481 | DOI | MR | Zbl

[43] N. Cirilo António, N. Manojlović, J. Math. Phys., 46:10 (2005), 102701, 19 pp., arXiv: nlin/0506029 | DOI | MR | Zbl