Short-wave transverse instabilities of line solitons of the two-dimensional hyperbolic nonlinear Schrödinger equation
Teoretičeskaâ i matematičeskaâ fizika, Tome 179 (2014) no. 1, pp. 78-89 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We prove that line solitons of the two-dimensional hyperbolic nonlinear Schrödinger equation are unstable under transverse perturbations of arbitrarily small periods, i.e., short waves. The analysis is based on the construction of Jost functions for the continuous spectrum of Schrödinger operators, the Sommerfeld radiation conditions, and the Lyapunov–Schmidt decomposition. We derive precise asymptotic expressions for the instability growth rate in the limit of short periods.
Keywords: nonlinear Schrödinger equation, transverse instability, Lyapunov–Schmidt decomposition, Fermi's golden rule.
Mots-clés : soliton
@article{TMF_2014_179_1_a4,
     author = {D. E. Pelinovsky and E. A. Ruvinskaya and O. E. Kurkina and B. Deconinck},
     title = {Short-wave transverse instabilities of line solitons of the~two-dimensional hyperbolic nonlinear {Schr\"odinger} equation},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {78--89},
     year = {2014},
     volume = {179},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2014_179_1_a4/}
}
TY  - JOUR
AU  - D. E. Pelinovsky
AU  - E. A. Ruvinskaya
AU  - O. E. Kurkina
AU  - B. Deconinck
TI  - Short-wave transverse instabilities of line solitons of the two-dimensional hyperbolic nonlinear Schrödinger equation
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2014
SP  - 78
EP  - 89
VL  - 179
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2014_179_1_a4/
LA  - ru
ID  - TMF_2014_179_1_a4
ER  - 
%0 Journal Article
%A D. E. Pelinovsky
%A E. A. Ruvinskaya
%A O. E. Kurkina
%A B. Deconinck
%T Short-wave transverse instabilities of line solitons of the two-dimensional hyperbolic nonlinear Schrödinger equation
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2014
%P 78-89
%V 179
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2014_179_1_a4/
%G ru
%F TMF_2014_179_1_a4
D. E. Pelinovsky; E. A. Ruvinskaya; O. E. Kurkina; B. Deconinck. Short-wave transverse instabilities of line solitons of the two-dimensional hyperbolic nonlinear Schrödinger equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 179 (2014) no. 1, pp. 78-89. http://geodesic.mathdoc.fr/item/TMF_2014_179_1_a4/

[1] V. E. Zakharov, A. N. Rubenchik, ZhETF, 65:3 (1973), 997–1011

[2] Yu. S. Kivshar, D. E. Pelinovsky, Phys. Rep., 331:4 (2000), 117–195 | DOI | MR

[3] B. Deconinck, D. Pelinovsky, J. D. Carter, Proc. R. Soc. London Ser. A, 462:2071 (2006), 2039–2061 | DOI | MR | Zbl

[4] J. Yang, Nonlinear Waves in Integrable and Nonintegrable Systems, Mathematical Modeling and Computation, 16, SIAM, Philadelphia, PA, 2010 | DOI | MR | Zbl

[5] N. V. Alexeeva, I. V. Barashenkov, A. A. Sukhorukov, Yu. S. Kivshar, Phys. Rev. A, 85:6 (2012), 063837, 13 pp., arXiv: 1207.5252 | DOI

[6] M. J. Ablowitz, H. Segur, J. Fluid Mech., 92:4 (1979), 691–715 | DOI | MR | Zbl

[7] S.-P. Gorza, B. Deconinck, Ph. Emplit, T. Trogdon, M. Haelterman, Phys. Rev. Lett., 106:9 (2011), 094101, 4 pp. | DOI

[8] S.-P. Gorza, B. Deconinck, T. Trogdon, P. Emplit, M. Haelterman, Opt. Lett., 37:22 (2012), 4657–4659 | DOI

[9] D. E. Pelinovsky, J. Yang, Phys. D, 255 (2013), 1–11, arXiv: 1210.0938 | DOI | MR | Zbl

[10] F. M. Mors, G. Feshbakh, Metody teoreticheskoi fiziki, v. 1, IL, M., 1958 | MR | Zbl

[11] S.-N. Chow, J. K. Hale, Methods of Bifurcation Theory, Grundlehren der Mathematischen Wissenschaften, 251, Springer, New York, 1982 | DOI | MR | Zbl

[12] S. J. Gustafson, I. M. Sigal, Mathematical Concepts of Quantum Mechanics, Springer, Berlin, 2006 | MR

[13] S. Alberverio, S. Yu. Dobrokhotov, E. S. Semenov, TMF, 138:1 (2004), 116–126 | MR | Zbl

[14] I. S. Gradshtein, I. M. Ryzhik, Tablitsy integralov, summ, ryadov i proizvedenii, Fizmatlit, M., 1971 | MR | MR | Zbl