Generalized oscillator representations for generalized Calogero Hamiltonians
Teoretičeskaâ i matematičeskaâ fizika, Tome 179 (2014) no. 1, pp. 36-77 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We construct generalized oscillator representations for all generalized Calogero Hamiltonians with the potential $V(x)=g_1/x^2+g_2x^2$, $g_1\ge-1/4$, $g_2>0$. These representations are generically nonunique, but for each Hamiltonian, there exists an optimum representation explicitly determining the ground state and its energy. For generalized Calogero Hamiltonians with coupling constants $g_1<-1/4$ or $g_2<0$, generalized oscillator representations do not exist, which agrees with the fact that the corresponding Hamiltonians are not bounded from below.
Keywords: quantum mechanics, oscillator representation, self-adjoint Hamiltonian.
@article{TMF_2014_179_1_a3,
     author = {B. L. Voronov and I. V. Tyutin},
     title = {Generalized oscillator representations for generalized {Calogero} {Hamiltonians}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {36--77},
     year = {2014},
     volume = {179},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2014_179_1_a3/}
}
TY  - JOUR
AU  - B. L. Voronov
AU  - I. V. Tyutin
TI  - Generalized oscillator representations for generalized Calogero Hamiltonians
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2014
SP  - 36
EP  - 77
VL  - 179
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2014_179_1_a3/
LA  - ru
ID  - TMF_2014_179_1_a3
ER  - 
%0 Journal Article
%A B. L. Voronov
%A I. V. Tyutin
%T Generalized oscillator representations for generalized Calogero Hamiltonians
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2014
%P 36-77
%V 179
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2014_179_1_a3/
%G ru
%F TMF_2014_179_1_a3
B. L. Voronov; I. V. Tyutin. Generalized oscillator representations for generalized Calogero Hamiltonians. Teoretičeskaâ i matematičeskaâ fizika, Tome 179 (2014) no. 1, pp. 36-77. http://geodesic.mathdoc.fr/item/TMF_2014_179_1_a3/

[1] I. V. Tyutin, B. L. Voronov, Phys. Scr., 87:3 (2013), 038119, 14 pp., arXiv: 1211.6331 | DOI | MR | Zbl

[2] D. M. Gitman, I. V. Tyutin, B. L. Voronov, Self-Adjoint Extensions in Quantum Mechanics. General Theory and Applications to Schrödinger and Dirac Equations with Singular Potentials, Progress in Mathematical Physics, 62, Birkhäuser, Boston, MA, 2012 | DOI | MR | Zbl

[3] N. I. Akhiezer, I. M. Glazman, Teoriya lineinykh operatorov v gilbertovom prostranstve, Nauka, M., 1966 | MR | MR | Zbl

[4] M. A. Naimark, Lineinye differentsialnye operatory, Nauka, M., 1969 | MR | MR | MR | Zbl

[5] J. von Neumann, Functional Operators, v. 2, The Geometry of Orthogonal Spaces, Princeton Univ. Press, Princeton, NJ, 1950 | Zbl

[6] G. Beitmen, A. Erdeii, Vysshie transtsendentnye funktsii, v. 1, Gipergeometricheskaya funktsiya. Funktsii Lezhandra, Nauka, M., 1965 | MR | Zbl

[7] I. S. Gradshtein, I. M. Ryzhik, Tablitsy integralov, summ, ryadov i proizvedenii, Fizmatgiz, M., 1963 | MR | Zbl