@article{TMF_2014_179_1_a3,
author = {B. L. Voronov and I. V. Tyutin},
title = {Generalized oscillator representations for generalized {Calogero} {Hamiltonians}},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {36--77},
year = {2014},
volume = {179},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2014_179_1_a3/}
}
TY - JOUR AU - B. L. Voronov AU - I. V. Tyutin TI - Generalized oscillator representations for generalized Calogero Hamiltonians JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2014 SP - 36 EP - 77 VL - 179 IS - 1 UR - http://geodesic.mathdoc.fr/item/TMF_2014_179_1_a3/ LA - ru ID - TMF_2014_179_1_a3 ER -
B. L. Voronov; I. V. Tyutin. Generalized oscillator representations for generalized Calogero Hamiltonians. Teoretičeskaâ i matematičeskaâ fizika, Tome 179 (2014) no. 1, pp. 36-77. http://geodesic.mathdoc.fr/item/TMF_2014_179_1_a3/
[1] I. V. Tyutin, B. L. Voronov, Phys. Scr., 87:3 (2013), 038119, 14 pp., arXiv: 1211.6331 | DOI | MR | Zbl
[2] D. M. Gitman, I. V. Tyutin, B. L. Voronov, Self-Adjoint Extensions in Quantum Mechanics. General Theory and Applications to Schrödinger and Dirac Equations with Singular Potentials, Progress in Mathematical Physics, 62, Birkhäuser, Boston, MA, 2012 | DOI | MR | Zbl
[3] N. I. Akhiezer, I. M. Glazman, Teoriya lineinykh operatorov v gilbertovom prostranstve, Nauka, M., 1966 | MR | MR | Zbl
[4] M. A. Naimark, Lineinye differentsialnye operatory, Nauka, M., 1969 | MR | MR | MR | Zbl
[5] J. von Neumann, Functional Operators, v. 2, The Geometry of Orthogonal Spaces, Princeton Univ. Press, Princeton, NJ, 1950 | Zbl
[6] G. Beitmen, A. Erdeii, Vysshie transtsendentnye funktsii, v. 1, Gipergeometricheskaya funktsiya. Funktsii Lezhandra, Nauka, M., 1965 | MR | Zbl
[7] I. S. Gradshtein, I. M. Ryzhik, Tablitsy integralov, summ, ryadov i proizvedenii, Fizmatgiz, M., 1963 | MR | Zbl