$p$-Adic Gibbs quasimeasures for the Vannimenus model on a Cayley tree
Teoretičeskaâ i matematičeskaâ fizika, Tome 179 (2014) no. 1, pp. 13-23 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study $p$-adic Gibbs quasimeasures for the Vannimenus model on the order-two Cayley tree. We especially address the problem of the boundedness of translation-invariant $p$-adic Gibbs quasimeasures. We also study periodic $p$-adic Gibbs quasimeasures.
Keywords: Cayley tree, Gibbs quasimeasure, translation-invariant measure, $p$-adic number.
Mots-clés : configuration, Vannimenus model
@article{TMF_2014_179_1_a1,
     author = {O. N. Khakimov},
     title = {$p${-Adic} {Gibbs} quasimeasures for {the~Vannimenus} model on {a~Cayley} tree},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {13--23},
     year = {2014},
     volume = {179},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2014_179_1_a1/}
}
TY  - JOUR
AU  - O. N. Khakimov
TI  - $p$-Adic Gibbs quasimeasures for the Vannimenus model on a Cayley tree
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2014
SP  - 13
EP  - 23
VL  - 179
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2014_179_1_a1/
LA  - ru
ID  - TMF_2014_179_1_a1
ER  - 
%0 Journal Article
%A O. N. Khakimov
%T $p$-Adic Gibbs quasimeasures for the Vannimenus model on a Cayley tree
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2014
%P 13-23
%V 179
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2014_179_1_a1/
%G ru
%F TMF_2014_179_1_a1
O. N. Khakimov. $p$-Adic Gibbs quasimeasures for the Vannimenus model on a Cayley tree. Teoretičeskaâ i matematičeskaâ fizika, Tome 179 (2014) no. 1, pp. 13-23. http://geodesic.mathdoc.fr/item/TMF_2014_179_1_a1/

[1] P. M. Bleher, J. Ruiz, V. A. Zagrebnov, J. Statist. Phys., 79:1–2 (1995), 473–482 | DOI | MR | Zbl

[2] Kh.-O. Georgi, Gibbsovskie mery i fazovye perekhody, Mir, M., 1992 | MR | Zbl

[3] A. Yu. Khrennikov, Non-Archimedean Analysis: Quantum Paradoxes, Dynamical Systems and Biological Models, Mathematics and Its Applications, 427, Kluwer, Dordrecht, 1997 | MR | Zbl

[4] E. Marinari, G. Parisi, Phys. Lett. B, 203:1–2 (1988), 52–54 | DOI | MR

[5] V. S. Vladimirov, I. V. Volovich, E. N. Zelenov, $p$-Adicheskii analiz i matematicheskaya fizika, Fizmatlit, M., 1994 | MR | MR | Zbl

[6] S. Albeverio, W. Karwowski, Stochastic Processes Appl., 53:1 (1994), 1–22 | DOI | MR | Zbl

[7] K. Yasuda, Osaka J. Math., 37:4 (2000), 967–985 | MR | Zbl

[8] O. N. Khakimov, $p$-Adic Numbers Ultrametric Anal. Appl., 5:3 (2013), 194–203 | DOI | MR | Zbl

[9] U. A. Rozikov, O. N. Khakimov, TMF, 175:1 (2013), 84–92 | DOI | DOI | MR | Zbl

[10] F. M. Mukhamedov, Math. Phys. Anal. Geom., 16:1 (2013), 49–87 | DOI | MR | Zbl

[11] F. M. Mukhamedov, $p$-Adic Numbers Ultrametric Anal. Appl., 2:3 (2010), 241–251 | DOI | MR | Zbl

[12] U. A. Rozikov, Gibbs Measures on Cayley Trees, World Sci., Singapore, 2013 | MR | Zbl

[13] N. N. Ganikhodzhaev, F. M. Mukhammedov, U. A. Rozikov, Uzb. matem. zhurn., 4 (1998), 23–29

[14] N. Koblits, $p$-Adicheskie chisla, $p$-adicheskii analiz i dzeta-funktsii, Mir, M., 1981 | MR | MR | Zbl

[15] W. H. Schikhof, Ultrametric Calculus, Cambridge Studies in Advanced Mathematics, 4, Cambridge Univ. Press, Cambridge, 1984 | MR | Zbl