Reflection matrices from Hadamard-type Temperley–Lieb $R$-matrices
Teoretičeskaâ i matematičeskaâ fizika, Tome 179 (2014) no. 1, pp. 3-12 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We classify nonoperatorial matrices $K$ solving the Skylanin quantum reflection equation for all $R$-matrices obtained from the newly defined general rank-$n$ Hadamard-type representations of the Temperley–Lieb algebra $TL_N(\sqrt{n})$. They are characterized by a universal set of algebraic equations in a specific canonical basis uniquely defined by the “master matrix” associated with the chosen realization of the Temperley–Lieb algebra.
Keywords: reflection equation, Yang–Baxter equation, Temperley–Lieb algebra.
@article{TMF_2014_179_1_a0,
     author = {J. Avan and P. P. Kulish and G. Rollet},
     title = {Reflection matrices from {Hadamard-type} {Temperley{\textendash}Lieb} $R$-matrices},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {3--12},
     year = {2014},
     volume = {179},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2014_179_1_a0/}
}
TY  - JOUR
AU  - J. Avan
AU  - P. P. Kulish
AU  - G. Rollet
TI  - Reflection matrices from Hadamard-type Temperley–Lieb $R$-matrices
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2014
SP  - 3
EP  - 12
VL  - 179
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2014_179_1_a0/
LA  - ru
ID  - TMF_2014_179_1_a0
ER  - 
%0 Journal Article
%A J. Avan
%A P. P. Kulish
%A G. Rollet
%T Reflection matrices from Hadamard-type Temperley–Lieb $R$-matrices
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2014
%P 3-12
%V 179
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2014_179_1_a0/
%G ru
%F TMF_2014_179_1_a0
J. Avan; P. P. Kulish; G. Rollet. Reflection matrices from Hadamard-type Temperley–Lieb $R$-matrices. Teoretičeskaâ i matematičeskaâ fizika, Tome 179 (2014) no. 1, pp. 3-12. http://geodesic.mathdoc.fr/item/TMF_2014_179_1_a0/

[1] Zh. Avan, T. Fonseka, L. Frappa, P. P. Kulish, E. Ragusi, Zh. Rolle, TMF, 178:2 (2014), 255–273, arXiv: 1306.2927 | DOI | MR | Zbl

[2] H. N. V. Temperley, E. H. Lieb, Proc. R. Soc. London Ser. A, 322:1549 (1971), 251–280 | DOI | MR | Zbl

[3] G. Wang, K. Xue, C. Sun, C. Zhou, T. Hu, Q. Wang, Quantum Inform. Proc., 9:6 (2010), 699–710, arXiv: 0903.3711 | DOI | MR | Zbl

[4] C. Sun, G. Wang, T. Hu, C. Zhou, Q. Wang, K. Xue, Int. J. Quantum Inform., 7:6 (2009), 1285–1293, arXiv: 0904.0090 | DOI | Zbl

[5] Zh. Avan, P. P. Kulish, Zh. Rollet, TMF, 169:2 (2011), 194–203 | DOI | DOI | Zbl

[6] J. J. Sylvester, Phil. Mag. Ser. 4, 34:232 (1867), 461–475

[7] A. T. Butson, Proc. Amer. Math. Soc., 13 (1962), 894–898 | DOI | MR | Zbl

[8] E. K. Sklyanin, J. Phys. A, 21:10 (1988), 2375–2389 | DOI | MR | Zbl

[9] V. F. R. Jones, Internat. J. Modern Phys. B, 4:5 (1990), 701–713 | DOI | MR | Zbl

[10] P. P. Kulish, J. Phys. A, 36:38 (2003), L489–L493 | DOI | MR | Zbl