Statistical theory of rarified gases in the Coulomb model of substance: Adiabatic approximation and initial atoms
Teoretičeskaâ i matematičeskaâ fizika, Tome 178 (2014) no. 3, pp. 433-448 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the framework of the adiabatic approximation for a subsystem of nuclei with the average distance between them significantly exceeding the dimensions of the initial atom, we consider a nonrelativistic Coulomb system consisting of electrons and nuclei of one type for the temperature range where we can restrict ourself to using the ground state to describe the electron subsystem. We show that the equilibrium properties of such a system are equivalent to the thermodynamic properties of the one-component system of initial atoms interacting between themselves via a short-range potential that is the effective potential of the nucleus–nucleus interaction. In the framework of the applicability of Boltzmann statistics, we present quantum group expansions for the thermodynamic properties of a chemically reacting rarified gas that correspond to the method of initial atoms.
Mots-clés : Coulomb model of substance
Keywords: rarified gas, initial atom, adiabatic approximation.
@article{TMF_2014_178_3_a7,
     author = {V. B. Bobrov},
     title = {Statistical theory of rarified gases in {the~Coulomb} model of substance: {Adiabatic} approximation and initial atoms},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {433--448},
     year = {2014},
     volume = {178},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2014_178_3_a7/}
}
TY  - JOUR
AU  - V. B. Bobrov
TI  - Statistical theory of rarified gases in the Coulomb model of substance: Adiabatic approximation and initial atoms
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2014
SP  - 433
EP  - 448
VL  - 178
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2014_178_3_a7/
LA  - ru
ID  - TMF_2014_178_3_a7
ER  - 
%0 Journal Article
%A V. B. Bobrov
%T Statistical theory of rarified gases in the Coulomb model of substance: Adiabatic approximation and initial atoms
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2014
%P 433-448
%V 178
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2014_178_3_a7/
%G ru
%F TMF_2014_178_3_a7
V. B. Bobrov. Statistical theory of rarified gases in the Coulomb model of substance: Adiabatic approximation and initial atoms. Teoretičeskaâ i matematičeskaâ fizika, Tome 178 (2014) no. 3, pp. 433-448. http://geodesic.mathdoc.fr/item/TMF_2014_178_3_a7/

[1] W. Ebeling, W. D. Kraeft, D. Kremp, Theory of Bound States and Ionization Equilibrium in Plasmas and Solids, Academie, Berlin, 1976

[2] A. B. Kudryavtsev, R. F. Jameson, W. Linert, The Law of Mass Action, Springer, Berlin, 2001

[3] V. E. Fortov, A. G. Khrapak, I. T. Yakubov, Fizika neidealnoi plazmy, Fizmatlit, M., 2010

[4] W. D. Kraeft, D. Kremp, W. Ebeling, G. Ropke, Quantum Statistics of Charged Particle Systems, Plenum, New York, 1986

[5] E. H. Lieb, R. Seiringer, The Stability of Matter in Quantum Mechanics, Camridge Univ. Press, Cambridge, 2009 | MR | Zbl

[6] V. K. Gryaznov, I. L. Iosilevskiy, V. E. Fortov, A. N. Starostin, V. K. Roerich, V. A. Baturin, S. V. Ayukov, Contrib. Plasma Phys., 53:4–5 (2013), 392–396 | DOI

[7] R. Redmer, G. Ropke, Contrib. Plasma Phys., 50:10 (2010), 970–985 | DOI

[8] V. B. Bobrov, S. A. Triger, Teplofizika vysokikh temperatur, 49:4 (2011), 513–523

[9] A. N. Starostin, V. K. Rerikh, ZhETF, 127:1 (2005), 186–219 | DOI

[10] A. Alastuey, V. Ballenegger, F. Cornu, Ph. A. Martin, J. Stat. Phys., 130:6 (2008), 1119–1176 | DOI | MR | Zbl

[11] A. Alastuey, V. Ballenegger, Contrib. Plasma Phys., 50:1 (2010), 46–53 | DOI

[12] Y. A. Omarbakiyeva, C. Fortmann, T. S. Ramazanov, G. Röpke, Phys. Rev. E, 82:2 (2010), 026407, 14 pp. | DOI

[13] V. B. Bobrov, S. A. Trigger, W. Ebeling, Europhys. Lett., 95:2 (2011), 25001, 5 pp. | DOI

[14] A. Alastuey, V. Ballenegger, Contrib. Plasma Phys., 52:1 (2012), 95–99 | DOI | MR

[15] J. M. McMahon, M. A. Morales, C. Pierleoni, D. M. Ceperley, Rev. Modern Phys., 84:4 (2012), 1607–1653 | DOI

[16] M. A. Morales, J. M. McMahon, C. Pierleoni, D. M. Ceperley, Phys. Rev. Lett., 110:6 (2013), 065702, 6 pp., arXiv: 1303.6671 | DOI

[17] C. A. Jiménez-Hoyos, T. M. Henderson, T. Tsuchimochi, G. E. Scuseria, J. Chem. Phys., 136:16 (2012), 164109, 14 pp. | DOI

[18] P. Hohenberg, W. Kohn, Phys. Rev., 136:3 (1964), B864–B871 | DOI | MR

[19] R. G. Parr, W. Yang, Density-Functional Theory of Atoms and Molecules, Oxford Univ. Press, New York, 1989

[20] M. W. C. Dharma-Wardana, F. Perrot, Phys. Rev. A, 26:4 (1982), 2096–2104 | DOI

[21] F. Perrot, M. W. C. Dharma-Wardana, Phys. Rev. A, 29:3 (1984), 1378–1390 | DOI

[22] M. W. C. Dharma-Wardana, Phys. Rev. Lett., 101:3 (2008), 035002, 4 pp., arXiv: 0804.2083 | DOI

[23] G. Kotliar, S. Y. Savrasov, K. Haule, V. S. Oudovenko, O. Parcollet, C. A. Marianetti, Rev. Modern Phys., 78:3 (2006), 865–951 | DOI

[24] W. Nelson, P. Bokes, P. Rinke, R. W. Godby, Phys. Rev. A, 75:3 (2007), 032505, 4 pp. | DOI

[25] K. Burke, J. Chem. Phys., 136:15 (2012), 150901, 9 pp., arXiv: 1201.3679 | DOI

[26] V. B. Bobrov, S. A. Trigger, Europhys. Lett., 94:3 (2011), 33001, 4 pp., arXiv: 1012.3241 | DOI

[27] V. B. Bobrov, S. A. Trigger, Yu. P. Vlasov, Europhys. Lett., 98:5 (2012), 53002, 5 pp. | DOI

[28] V. B. Bobrov, S. A. Trigger, ZhETF, 143:4 (2013), 729–734 | DOI

[29] K. Pernal, Phys. Rev. Lett., 94:23 (2005), 233002, 4 pp. | DOI

[30] K. Pernal, Phys. Rev. A, 81:5 (2010), 052511, 8 pp. | DOI

[31] N. N. Lathiotakis, N. I. Gidopoulos, N. Helbig, J. Chem. Phys., 132:8 (2010), 084105, 8 pp. | DOI

[32] V. B. Bobrov, S. A. Trigger, Yu. P. Vlasov, Phys. Rev. A, 83:3 (2011), 034501, 3 pp. | DOI

[33] D. A. Kirzhnits, Polevye metody teorii mnogikh chastits, Gosatomizdat, M., 1963 | MR

[34] V. B. Bobrov, S. A. Trigger, Phys. Lett. A, 374:4 (2010), 4188–4192 | DOI | Zbl

[35] A. M. Semenov, “Metod iskhodnykh atomov v statisticheskoi termodinamike khimicheski reagiruyuschikh gazov”, Matematicheskie metody khimicheskoi termodinamiki, Nauka, Novosibirsk, 1982, 88–99

[36] E. G. Maksimov, A. E. Karakozov, UFN, 178:6 (2008), 561–576 | DOI | DOI

[37] V. L. Bonch-Bruevich, I. P. Zvyagin, R. Kaiper, A. G. Mironov, R. Enderlain, B. Esser, Elektronnaya teoriya neuporyadochennykh poluprovodnikov, Nauka, M., 1981

[38] V. B. Bobrov, S. A. Trigger, Solid State Commun., 56:1 (1985), 29–34 | DOI

[39] L. D. Landau, E. M. Lifshits, Teoreticheskaya fizika, v. 5, Statisticheskaya fizika, Nauka, M., 1976 | MR | Zbl

[40] A. Messia, Kvantovaya mekhanika, v. 2, Nauka, M., 1979 | MR | MR | Zbl

[41] B. Kahn, G. E. Uhlenbeck, Physica, 5:5 (1938), 399–416 | DOI

[42] K. Huang, Statistical Mechanics, Wiley Sons, New York, 1963 | MR

[43] T. L. Hill, Statistical Mechanics, McGraw-Hill, New York, 1956 | MR | Zbl

[44] B. V. Zelener, V. I. Mika, A. M. Semenov, V. S. Filinov, Dokl. AN SSSR, 232:3 (1977), 562–565

[45] W. Cencek, M. Przybytek, J. Komasa, J. B. Mehl, B. Jeziorski, K. Szalewicz, J. Chem. Phys., 136:22 (2012), 224303, 31 pp. | DOI

[46] E. S. Yakub, “Raschetnye metody statisticheskoi termodinamiki reagiruyuschikh zhidkostei”, Obzory po teplofizicheskim svoistvam veschestv, v. 5(43), IVTAN, M., 1983, 38–99

[47] E. Beth, G. E. Uhlenbeck, Physica, 4:10 (1937), 915–924 | DOI | Zbl

[48] G. Garheroglio, M. R. Moldover, A. H. Harvey, J. Res. Natl. Inst. Stand. Technol., 116:4 (2011), 729–742 | DOI

[49] R. T. Jacobsen, J. W. Leachman, S. G. Penoncello, E. W. Lemmon, Internat. J. Thermophys., 28:3 (2007), 758–772 | DOI