The~Kardar--Parisi--Zhang equation and its matrix generalization
Teoretičeskaâ i matematičeskaâ fizika, Tome 178 (2014) no. 3, pp. 416-432
Voir la notice de l'article provenant de la source Math-Net.Ru
We study the problem of the condensate (stochastic average) origination for an auxiliary field in the Kardar–Parisi–Zhang equation and its matrix generalization. We cannot reliably conclude that there is a condensate for the Kardar–Parisi–Zhang equation in the framework of the one-loop approximation improved by the renormalization group method. The matrix generalization of the Kardar–Parisi–Zhang equation permits a positive answer to the question of whether there is a nonzero condensate, and the problem can be solved exactly in the large-$N$ limit.
Keywords:
Kardar–Parisi–Zhang equation, renormalization group, effective potential, $1/N$-expansion.
@article{TMF_2014_178_3_a6,
author = {L. V. Bork and S. L. Ogarkov},
title = {The~Kardar--Parisi--Zhang equation and its matrix generalization},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {416--432},
publisher = {mathdoc},
volume = {178},
number = {3},
year = {2014},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2014_178_3_a6/}
}
TY - JOUR AU - L. V. Bork AU - S. L. Ogarkov TI - The~Kardar--Parisi--Zhang equation and its matrix generalization JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2014 SP - 416 EP - 432 VL - 178 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2014_178_3_a6/ LA - ru ID - TMF_2014_178_3_a6 ER -
L. V. Bork; S. L. Ogarkov. The~Kardar--Parisi--Zhang equation and its matrix generalization. Teoretičeskaâ i matematičeskaâ fizika, Tome 178 (2014) no. 3, pp. 416-432. http://geodesic.mathdoc.fr/item/TMF_2014_178_3_a6/