Differential-geometric aspects of a nonholonomic Dirac mechanics: Lessons of a model quadratic in velocities
Teoretičeskaâ i matematičeskaâ fizika, Tome 178 (2014) no. 3, pp. 403-415 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Faddeev and Vershik proposed the Hamiltonian and Lagrangian formulations of constrained mechanical systems that are invariant from the differential geometry standpoint. In both formulations, the description is based on a nondegenerate symplectic $2$-form defined on a cotangent bundle $T^*Q$ (in the Hamiltonian formulation) or on a tangent bundle $TQ$ (in the Lagrangian formulation), and constraints are sets of functions in involution on these manifolds. We demonstrate that this technique does not allow “invariantization” of the Dirac procedure of constraint “proliferation.” We show this in an example of a typical quantum field model in which the original Lagrange function is a quadratic form in velocities with a degenerate coefficient matrix. We postulate that the initial phase space is a manifold where all arguments of the action functional including the Lagrange multipliers are defined. The Lagrange multipliers can then be naturally interpreted physically as velocities (in the Hamiltonian formulation) or momenta (in the Lagrangian formulation) related to “nonphysical” degrees of freedom. A quasisymplectic $2$-form invariantly defined on such a manifold is degenerate. We propose new differential-geometric structures that allow formulating the Dirac procedure invariantly.
Keywords: nonholonomic Dirac mechanics, constraint proliferation, differential geometry.
@article{TMF_2014_178_3_a5,
     author = {V. P. Pavlov},
     title = {Differential-geometric aspects of a~nonholonomic {Dirac} mechanics: {Lessons} of a~model quadratic in velocities},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {403--415},
     year = {2014},
     volume = {178},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2014_178_3_a5/}
}
TY  - JOUR
AU  - V. P. Pavlov
TI  - Differential-geometric aspects of a nonholonomic Dirac mechanics: Lessons of a model quadratic in velocities
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2014
SP  - 403
EP  - 415
VL  - 178
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2014_178_3_a5/
LA  - ru
ID  - TMF_2014_178_3_a5
ER  - 
%0 Journal Article
%A V. P. Pavlov
%T Differential-geometric aspects of a nonholonomic Dirac mechanics: Lessons of a model quadratic in velocities
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2014
%P 403-415
%V 178
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2014_178_3_a5/
%G ru
%F TMF_2014_178_3_a5
V. P. Pavlov. Differential-geometric aspects of a nonholonomic Dirac mechanics: Lessons of a model quadratic in velocities. Teoretičeskaâ i matematičeskaâ fizika, Tome 178 (2014) no. 3, pp. 403-415. http://geodesic.mathdoc.fr/item/TMF_2014_178_3_a5/

[1] L. D. Faddeev, TMF, 1:1 (1969), 3–18 | DOI | MR | Zbl

[2] V. I. Arnold, Matematicheskie metody klassicheskoi mekhaniki, Nauka, M., 1989 | MR | MR | Zbl

[3] A. M. Vershik, L. D. Faddeev, Dokl. AN SSSR, 202:3 (1972), 555–557 | Zbl

[4] A. M. Vershik, L. D. Faddeev, “Lagranzheva mekhanika v invariantnoi forme”, Problemy teoreticheskoi fiziki, v. 2, Teoriya yadra. Funktsionalnye metody v kvantovoi teorii polya i statisticheskaya fizika, Izd.-vo LGU, L., 1975, 129–141

[5] A. M. Vershik, “Mathematics of nonholonomicity”, Appendix 3 in: V. Sergeev, The Thermodynamic Approach to Market, Preprint No 76, ed. D. A. Leites, Max-Planck-Institut für Mathematik, Leipzig, 2006, 137–154, arXiv: 0803.3432

[6] K. Godbiion, Differentsialnaya geometriya i analiticheskaya mekhanika, Mir, M., 1979 | MR | Zbl

[7] P. Dirak, “Generalized Hamiltonian dynamics”, Sobranie nauchnykh trudov. Ch. 3, v. 3, Kvantovaya teoriya (nauchnye stati 1948–1984), Fizmatlit, M., 2004 | DOI | MR | Zbl

[8] V. P. Pavlov, A. O. Starinets, TMF, 105:3 (1995), 429–437 | DOI | MR | Zbl

[9] V. P. Pavlov, Tr. MIAN, 228 (2000), 145–154 | MR | Zbl

[10] V. P. Pavlov, “Negolonomnaya mekhanika Diraka i differentsialnaya geometriya”, Lektsionnye kursy NOTs, 22, MIAN, M., 2014, 3–55 | DOI