Scalar products in models with a $GL(3)$ trigonometric $R$-matrix: Highest coefficient
Teoretičeskaâ i matematičeskaâ fizika, Tome 178 (2014) no. 3, pp. 363-389 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study quantum integrable models with a $GL(3)$ trigonometric $R$-matrix solvable by the nested algebraic Bethe ansatz. Scalar products of Bethe vectors in such models can be expressed in terms of bilinear combinations of the highest coefficients. We show that there exist two different highest coefficients in the models with a $GL(3)$ trigonometric $R$-matrix. We obtain various representations for the highest coefficients in terms of sums over partitions. We also prove several important properties of the highest coefficients, which are necessary for evaluating the scalar products.
Keywords: nested Bethe ansatz, highest coefficient.
Mots-clés : scalar product
@article{TMF_2014_178_3_a3,
     author = {S. Z. Pakulyak and E. Ragoucy and N. A. Slavnov},
     title = {Scalar products in models with a~$GL(3)$ trigonometric $R$-matrix: {Highest} coefficient},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {363--389},
     year = {2014},
     volume = {178},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2014_178_3_a3/}
}
TY  - JOUR
AU  - S. Z. Pakulyak
AU  - E. Ragoucy
AU  - N. A. Slavnov
TI  - Scalar products in models with a $GL(3)$ trigonometric $R$-matrix: Highest coefficient
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2014
SP  - 363
EP  - 389
VL  - 178
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2014_178_3_a3/
LA  - ru
ID  - TMF_2014_178_3_a3
ER  - 
%0 Journal Article
%A S. Z. Pakulyak
%A E. Ragoucy
%A N. A. Slavnov
%T Scalar products in models with a $GL(3)$ trigonometric $R$-matrix: Highest coefficient
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2014
%P 363-389
%V 178
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2014_178_3_a3/
%G ru
%F TMF_2014_178_3_a3
S. Z. Pakulyak; E. Ragoucy; N. A. Slavnov. Scalar products in models with a $GL(3)$ trigonometric $R$-matrix: Highest coefficient. Teoretičeskaâ i matematičeskaâ fizika, Tome 178 (2014) no. 3, pp. 363-389. http://geodesic.mathdoc.fr/item/TMF_2014_178_3_a3/

[1] E. K. Sklyanin, L. A. Takhtadzhyan, L. D. Faddeev, TMF, 40:2 (1979), 194–220 | DOI | MR

[2] P. P. Kulish, N. Yu. Reshetikhin, J. Phys. A, 16:16 (1983), L591–L596 | DOI | MR | Zbl

[3] V. E. Korepin, N. M. Bogoliubov, A. G. Izergin, Quantum Inverse Scattering Method and Correlation Functions, Cambridge Univ. Press, Cambridge, 1993 | MR | Zbl

[4] L. D. Faddeev, “How the algebraic Bethe ansats works for integrable models”, Symmétries quantiques = Quantum Symmétries, Proceedings of the Les Houches summer school, Session LXIV (Les Houches, France, August 1 – September 8, 1995), eds. A. Connes, K. Gawedzki, J. Zinn-Justin, North-Holland, Amsterdam, 1998, 149–219 | MR | Zbl

[5] V. E. Korepin, Commun. Math. Phys., 86:3 (1982), 391–418 | DOI | MR | Zbl

[6] A. G. Izergin, V. E. Korepin, Commun. Math. Phys., 94:1 (1984), 67–92 | DOI | MR | Zbl

[7] V. E. Korepin, Commun. Math. Phys., 94:1 (1984), 93–113 | DOI | MR | Zbl

[8] N. Kitanine, J. M. Maillet, V. Terras, Nucl. Phys. B, 554:3 (1999), 647–678, arXiv: math-ph/9807020 | DOI | MR | Zbl

[9] J. M. Maillet, V. Terras, Nucl. Phys. B, 575:3 (2000), 627–644, arXiv: hep-th/9911030 | DOI | MR | Zbl

[10] N. Kitanine, K. Kozlowski, J. M. Maillet, N. A. Slavnov, V. Terras, J. Stat. Mech., 01 (2007), P01022, 17 pp., arXiv: hep-th/0611142 | MR

[11] N. Kitanine, J. M. Maillet, V. Terras, Nucl. Phys. B, 567:3 (2000), 554–582, arXiv: math-ph/9907019 | DOI | MR | Zbl

[12] N. Kitanine, J. M. Maillet, N. A. Slavnov, V. Terras, Nucl. Phys. B, 641:3 (2002), 487–518, arXiv: hep-th/0201045 | DOI | MR | Zbl

[13] N. Kitanine, K. K. Kozlowski, J. M. Maillet, N. A. Slavnov, V. Terras, J. Stat. Mech., 04 (2009), P04003, 66 pp., arXiv: 0808.0227 | DOI | MR

[14] F. Göhmann, A. Klümper, A. Seel, J. Phys. A, 37:31 (2004), 7625–7651, arXiv: hep-th/0405089 | DOI | MR | Zbl

[15] F. Göhmann, A. Klümper, A. Seel, J. Phys. A, 38:9 (2006), 1833–1841, arXiv: cond-mat/0412062 | DOI | MR

[16] A. Seel, T. Bhattacharyya, F. Göhmann, A. Klümper, J. Stat. Mech., 08 (2007), P08030, 10 pp., arXiv: 0705.3569 | DOI | MR

[17] N. Kitanine, K. K. Kozlowski, J. M. Maillet, N. A. Slavnov, V. Terras, J. Stat. Mech., 12 (2011), P12010, 28 pp., arXiv: 1110.0803 | DOI

[18] N. Kitanine, K. K. Kozlowski, J. M. Maillet, N. A. Slavnov, V. Terras, J. Stat. Mech., 09 (2012), P09001, 33 pp., arXiv: 1206.2630 | DOI | MR

[19] J. S. Caux, J. M. Maillet, Phys. Rev. Lett., 95:7 (2005), 077201, 3 pp., arXiv: cond-mat/0502365 | DOI

[20] R. G. Pereira, J. Sirker, J. S. Caux, R. Hagemans, J. M. Maillet, S. R. White, I. Affleck, Phys. Rev. Lett., 96:25 (2006), 257202, 4 pp., arXiv: cond-mat/0603681 | DOI

[21] R. G. Pereira, J. Sirker, J. S. Caux, R. Hagemans, J. M. Maillet, S. R. White, I. Affleck, J. Stat. Mech., 08 (2007), P08022, 64 pp., arXiv: 0706.4327 | DOI | MR

[22] J. S. Caux, P. Calabrese, N. A. Slavnov, J. Stat. Mech., 01 (2007), P01008, 20 pp., arXiv: cond-mat/0611321 | DOI

[23] N. A. Slavnov, TMF, 79:2 (1989), 232–240 | DOI | MR

[24] N. Yu. Reshetikhin, Zap. nauchn. sem. LOMI, 150 (1986), 196–213 | DOI | MR

[25] M. Wheeler, Scalar products in generalized models with $SU(3)$-symmetry, arXiv: 1204.2089 | MR

[26] S. Belliard, S. Pakuliak, E. Ragoucy, N. A. Slavnov, J. Stat. Mech., 10 (2012), P10017, 25 pp., arXiv: 1207.0956 | DOI | MR

[27] S. Belliard, S. Pakuliak, E. Ragoucy, N. A. Slavnov, J. Stat. Mech., 04 (2013), P04033, 16 pp., arXiv: 1211.3968 | DOI | MR

[28] S. Belliard, S. Pakuliak, E. Ragoucy, N. A. Slavnov, J. Stat. Mech., 09 (2012), P09003, 17 pp., arXiv: 1206.4931 | DOI | MR

[29] S. Pakuliak, E. Ragoucy, N. A. Slavnov, Bethe vectors of quantum integrable models based on $U_q(\widehat{\mathfrak{gl}}_N)$, arXiv: 1310.3253 | MR

[30] P. P. Kulish, N. Yu. Reshetikhin, ZhETF, 80:1 (1981), 214–228 | MR

[31] P. P. Kulish, N. Yu. Reshetikhin, Zap. nauchn. sem. LOMI, 120 (1982), 92–121 | DOI | MR

[32] A. N. Varchenko, V. O. Tarasov, Algebra i analiz, 6:2 (1994), 90–137, arXiv: hep-th/9311040 | DOI | MR | Zbl

[33] S. Khoroshkin, S. Pakuliak, J. Math. Kyoto Univ., 48:2 (2008), 277–321 | DOI | MR | Zbl

[34] B. Enriquez, S. Khoroshkin, S. Pakuliak, Commun. Math. Phys., 276:3 (2007), 691–725 | DOI | MR | Zbl

[35] A. F. Oskin, S. Z. Pakulyak, A. V. Silantev, Algebra i analiz, 21:4 (2009), 196–240 | DOI | MR | Zbl

[36] S. Pakuliak, E. Ragoucy, N. A. Slavnov, SIGMA, 9 (2013), 058, 23 pp., arXiv: 1304.7602 | DOI | MR | Zbl

[37] A. A. Belavin, V. G. Drinfeld, Funkts. analiz i ego pril., 16:3 (1982), 1–29 | DOI | MR | Zbl

[38] A. G. Izergin, Dokl. AN SSSR, 297:2 (1987), 331–333 | MR | Zbl