Solutions of multidimensional partial differential equations representable as a~one-dimensional flow
Teoretičeskaâ i matematičeskaâ fizika, Tome 178 (2014) no. 3, pp. 346-362
Voir la notice de l'article provenant de la source Math-Net.Ru
We propose an algorithm for reducing an $(M{+}1)$-dimensional nonlinear partial differential equation (PDE) representable in the form of a one-dimensional flow $u_t+w_{x_1}(u,u_x,u_{xx},\dots)=0$ (where $w$ is an arbitrary local function of $u$ and its $x_i$ derivatives, $i=1,\dots, M$) to a family of $M$-dimensional nonlinear PDEs $F(u,w)=0$, where $F$ is a general (or particular) solution of a certain second-order two-dimensional nonlinear PDE. In particular, the $M$-dimensional PDE might turn out to be an ordinary differential equation, which can be integrated in some cases to obtain explicit solutions of the original $(M{+}1)$-dimensional equation. Moreover, a spectral parameter can be introduced in the function $F$, which leads to a linear spectral equation associated with the original equation. We present simplest examples of nonlinear PDEs together with their explicit solutions.
Keywords:
method of characteristics, integrability theory, boundary condition, particular solution, reduction to lower dimensions.
@article{TMF_2014_178_3_a2,
author = {A. I. Zenchuk},
title = {Solutions of multidimensional partial differential equations representable as a~one-dimensional flow},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {346--362},
publisher = {mathdoc},
volume = {178},
number = {3},
year = {2014},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2014_178_3_a2/}
}
TY - JOUR AU - A. I. Zenchuk TI - Solutions of multidimensional partial differential equations representable as a~one-dimensional flow JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2014 SP - 346 EP - 362 VL - 178 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2014_178_3_a2/ LA - ru ID - TMF_2014_178_3_a2 ER -
%0 Journal Article %A A. I. Zenchuk %T Solutions of multidimensional partial differential equations representable as a~one-dimensional flow %J Teoretičeskaâ i matematičeskaâ fizika %D 2014 %P 346-362 %V 178 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/TMF_2014_178_3_a2/ %G ru %F TMF_2014_178_3_a2
A. I. Zenchuk. Solutions of multidimensional partial differential equations representable as a~one-dimensional flow. Teoretičeskaâ i matematičeskaâ fizika, Tome 178 (2014) no. 3, pp. 346-362. http://geodesic.mathdoc.fr/item/TMF_2014_178_3_a2/