Solutions of multidimensional partial differential equations representable as a~one-dimensional flow
Teoretičeskaâ i matematičeskaâ fizika, Tome 178 (2014) no. 3, pp. 346-362

Voir la notice de l'article provenant de la source Math-Net.Ru

We propose an algorithm for reducing an $(M{+}1)$-dimensional nonlinear partial differential equation (PDE) representable in the form of a one-dimensional flow $u_t+w_{x_1}(u,u_x,u_{xx},\dots)=0$ (where $w$ is an arbitrary local function of $u$ and its $x_i$ derivatives, $i=1,\dots, M$) to a family of $M$-dimensional nonlinear PDEs $F(u,w)=0$, where $F$ is a general (or particular) solution of a certain second-order two-dimensional nonlinear PDE. In particular, the $M$-dimensional PDE might turn out to be an ordinary differential equation, which can be integrated in some cases to obtain explicit solutions of the original $(M{+}1)$-dimensional equation. Moreover, a spectral parameter can be introduced in the function $F$, which leads to a linear spectral equation associated with the original equation. We present simplest examples of nonlinear PDEs together with their explicit solutions.
Keywords: method of characteristics, integrability theory, boundary condition, particular solution, reduction to lower dimensions.
@article{TMF_2014_178_3_a2,
     author = {A. I. Zenchuk},
     title = {Solutions of multidimensional partial differential equations representable as a~one-dimensional flow},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {346--362},
     publisher = {mathdoc},
     volume = {178},
     number = {3},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2014_178_3_a2/}
}
TY  - JOUR
AU  - A. I. Zenchuk
TI  - Solutions of multidimensional partial differential equations representable as a~one-dimensional flow
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2014
SP  - 346
EP  - 362
VL  - 178
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2014_178_3_a2/
LA  - ru
ID  - TMF_2014_178_3_a2
ER  - 
%0 Journal Article
%A A. I. Zenchuk
%T Solutions of multidimensional partial differential equations representable as a~one-dimensional flow
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2014
%P 346-362
%V 178
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2014_178_3_a2/
%G ru
%F TMF_2014_178_3_a2
A. I. Zenchuk. Solutions of multidimensional partial differential equations representable as a~one-dimensional flow. Teoretičeskaâ i matematičeskaâ fizika, Tome 178 (2014) no. 3, pp. 346-362. http://geodesic.mathdoc.fr/item/TMF_2014_178_3_a2/