Solutions of multidimensional partial differential equations representable as a one-dimensional flow
Teoretičeskaâ i matematičeskaâ fizika, Tome 178 (2014) no. 3, pp. 346-362 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We propose an algorithm for reducing an $(M{+}1)$-dimensional nonlinear partial differential equation (PDE) representable in the form of a one-dimensional flow $u_t+w_{x_1}(u,u_x,u_{xx},\dots)=0$ (where $w$ is an arbitrary local function of $u$ and its $x_i$ derivatives, $i=1,\dots, M$) to a family of $M$-dimensional nonlinear PDEs $F(u,w)=0$, where $F$ is a general (or particular) solution of a certain second-order two-dimensional nonlinear PDE. In particular, the $M$-dimensional PDE might turn out to be an ordinary differential equation, which can be integrated in some cases to obtain explicit solutions of the original $(M{+}1)$-dimensional equation. Moreover, a spectral parameter can be introduced in the function $F$, which leads to a linear spectral equation associated with the original equation. We present simplest examples of nonlinear PDEs together with their explicit solutions.
Keywords: method of characteristics, integrability theory, boundary condition, particular solution, reduction to lower dimensions.
@article{TMF_2014_178_3_a2,
     author = {A. I. Zenchuk},
     title = {Solutions of multidimensional partial differential equations representable as a~one-dimensional flow},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {346--362},
     year = {2014},
     volume = {178},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2014_178_3_a2/}
}
TY  - JOUR
AU  - A. I. Zenchuk
TI  - Solutions of multidimensional partial differential equations representable as a one-dimensional flow
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2014
SP  - 346
EP  - 362
VL  - 178
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2014_178_3_a2/
LA  - ru
ID  - TMF_2014_178_3_a2
ER  - 
%0 Journal Article
%A A. I. Zenchuk
%T Solutions of multidimensional partial differential equations representable as a one-dimensional flow
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2014
%P 346-362
%V 178
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2014_178_3_a2/
%G ru
%F TMF_2014_178_3_a2
A. I. Zenchuk. Solutions of multidimensional partial differential equations representable as a one-dimensional flow. Teoretičeskaâ i matematičeskaâ fizika, Tome 178 (2014) no. 3, pp. 346-362. http://geodesic.mathdoc.fr/item/TMF_2014_178_3_a2/

[1] Dzh. Uizem, Lineinye i nelineinye volny, Mir, M., 1977

[2] S. P. Tsarev, Dokl. AN SSSR, 282:3 (1985), 534–537 | MR | Zbl

[3] B. A. Dubrovin, S. P. Novikov, UMN, 44:6(270) (1989), 29–98 | DOI | MR | Zbl

[4] S. P. Tsarev, Izv. AN SSSR. Ser. matem., 54:5 (1990), 1048–1068 | DOI | MR | Zbl

[5] E. V. Ferapontov, TMF, 99:2 (1994), 257–262 | DOI | MR | Zbl

[6] E. Hopf, Commun. Pure Appl. Math., 3:3 (1950), 201–230 | DOI | MR | Zbl

[7] J. D. Cole, Quart. Appl. Math., 9 (1951), 225–236 | DOI | MR | Zbl

[8] F. Calogero, “Why are certain nonlinear PDEs both widely applicable and integrable?”, What is Integrability?, ed. V. E. Zakharov, Springer, Berlin, 1991, 1–62 | DOI | MR | Zbl

[9] D. Li, Ya. G. Sinai, “Complex singularities of the Burgers system and renormalization group method”, Current Developments in Mathematics, 2006, eds. D. Jerison, B. Mazur, T. Mrowka, W. Schmid, R. P. Stanley, S.-T. Yau, International Press, Somerville, MA, 2008, 181–210 | MR | Zbl

[10] D. Li, Ya. G. Sinai, J. Math. Phys., 51:1 (2010), 015205, 16 pp. | DOI | MR | Zbl

[11] C. S. Gardner, J. M. Green, M. D. Kruskal, R. M. Miura, Phys. Rev. Lett., 19:19 (1967), 1095–1097 | DOI

[12] V. E. Zakharov, S. V. Manakov, S. P. Novikov, L. P. Pitaevskii, Teoriya solitonov: Metod obratnoi zadachi, Nauka, M., 1980 | MR | MR | Zbl

[13] M. J. Ablowitz, P. A. Clarkson, Solitons, Nonlinear Evolution Equations and Inverse Scattering, London Mathematical Society Lecture Note Series, 149, Cambridge Univ. Press, Cambridge, 1991 | MR | Zbl

[14] B. Konopel'chenko, Solitons in Multidimensions. Inverse Spectral Transform Method, World Sci., Singapore, 1993 | MR | Zbl

[15] V. E. Zakharov, A. B. Shabat, Funkts. anal. i ego pril., 8:3 (1974), 43–53 | DOI | MR | Zbl

[16] V. E. Zakharov, A. B. Shabat, Funkts. anal. i ego pril., 13:3 (1979), 13–22 | DOI | MR | Zbl

[17] A. I. Zenchuk, Particular solutions to multidimensional PDEs with KdV-type nonlinearity, arXiv: 1304.6864 | MR

[18] T. Schäfer, C. E. Wayne, Phys. D, 196:1–2 (2004), 90–105 | DOI | MR | Zbl

[19] A. Sakovich, S. Sakovich, J. Phys. Soc. Japan, 74:1 (2005), 239–241, arXiv: nlin/0409034 | DOI | Zbl