@article{TMF_2014_178_3_a2,
author = {A. I. Zenchuk},
title = {Solutions of multidimensional partial differential equations representable as a~one-dimensional flow},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {346--362},
year = {2014},
volume = {178},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2014_178_3_a2/}
}
TY - JOUR AU - A. I. Zenchuk TI - Solutions of multidimensional partial differential equations representable as a one-dimensional flow JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2014 SP - 346 EP - 362 VL - 178 IS - 3 UR - http://geodesic.mathdoc.fr/item/TMF_2014_178_3_a2/ LA - ru ID - TMF_2014_178_3_a2 ER -
A. I. Zenchuk. Solutions of multidimensional partial differential equations representable as a one-dimensional flow. Teoretičeskaâ i matematičeskaâ fizika, Tome 178 (2014) no. 3, pp. 346-362. http://geodesic.mathdoc.fr/item/TMF_2014_178_3_a2/
[1] Dzh. Uizem, Lineinye i nelineinye volny, Mir, M., 1977
[2] S. P. Tsarev, Dokl. AN SSSR, 282:3 (1985), 534–537 | MR | Zbl
[3] B. A. Dubrovin, S. P. Novikov, UMN, 44:6(270) (1989), 29–98 | DOI | MR | Zbl
[4] S. P. Tsarev, Izv. AN SSSR. Ser. matem., 54:5 (1990), 1048–1068 | DOI | MR | Zbl
[5] E. V. Ferapontov, TMF, 99:2 (1994), 257–262 | DOI | MR | Zbl
[6] E. Hopf, Commun. Pure Appl. Math., 3:3 (1950), 201–230 | DOI | MR | Zbl
[7] J. D. Cole, Quart. Appl. Math., 9 (1951), 225–236 | DOI | MR | Zbl
[8] F. Calogero, “Why are certain nonlinear PDEs both widely applicable and integrable?”, What is Integrability?, ed. V. E. Zakharov, Springer, Berlin, 1991, 1–62 | DOI | MR | Zbl
[9] D. Li, Ya. G. Sinai, “Complex singularities of the Burgers system and renormalization group method”, Current Developments in Mathematics, 2006, eds. D. Jerison, B. Mazur, T. Mrowka, W. Schmid, R. P. Stanley, S.-T. Yau, International Press, Somerville, MA, 2008, 181–210 | MR | Zbl
[10] D. Li, Ya. G. Sinai, J. Math. Phys., 51:1 (2010), 015205, 16 pp. | DOI | MR | Zbl
[11] C. S. Gardner, J. M. Green, M. D. Kruskal, R. M. Miura, Phys. Rev. Lett., 19:19 (1967), 1095–1097 | DOI
[12] V. E. Zakharov, S. V. Manakov, S. P. Novikov, L. P. Pitaevskii, Teoriya solitonov: Metod obratnoi zadachi, Nauka, M., 1980 | MR | MR | Zbl
[13] M. J. Ablowitz, P. A. Clarkson, Solitons, Nonlinear Evolution Equations and Inverse Scattering, London Mathematical Society Lecture Note Series, 149, Cambridge Univ. Press, Cambridge, 1991 | MR | Zbl
[14] B. Konopel'chenko, Solitons in Multidimensions. Inverse Spectral Transform Method, World Sci., Singapore, 1993 | MR | Zbl
[15] V. E. Zakharov, A. B. Shabat, Funkts. anal. i ego pril., 8:3 (1974), 43–53 | DOI | MR | Zbl
[16] V. E. Zakharov, A. B. Shabat, Funkts. anal. i ego pril., 13:3 (1979), 13–22 | DOI | MR | Zbl
[17] A. I. Zenchuk, Particular solutions to multidimensional PDEs with KdV-type nonlinearity, arXiv: 1304.6864 | MR
[18] T. Schäfer, C. E. Wayne, Phys. D, 196:1–2 (2004), 90–105 | DOI | MR | Zbl
[19] A. Sakovich, S. Sakovich, J. Phys. Soc. Japan, 74:1 (2005), 239–241, arXiv: nlin/0409034 | DOI | Zbl