Integer-valued characteristics of solutions of the noncommutative
Teoretičeskaâ i matematičeskaâ fizika, Tome 178 (2014) no. 3, pp. 307-321
Cet article a éte moissonné depuis la source Math-Net.Ru
Any finite-energy solution of a noncommutative sigma model has three nonnegative integer-valued characteristics: the normalized energy $e(\Phi)$, canonical rank $r(\Phi)$, and minimum uniton number $u(\Phi)$. We prove that $r(\Phi)\ge u(\Phi)$ and $e(\Phi)\ge u(\Phi)(u(\Phi)+1)/2$. Given any numbers $e,r,u\in\mathbb N$ that satisfy the slightly stronger inequalities $r\ge u$ and $e\ge r+u(u-1)/2$, we construct a finite-energy solution $\Phi$ with $e(\Phi)=e$, $r(\Phi)=r$, and $u(\Phi)=u$.
Keywords:
noncommutative sigma model, uniton factorization.
@article{TMF_2014_178_3_a0,
author = {A. V. Domrina},
title = {Integer-valued characteristics of solutions of the~noncommutative},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {307--321},
year = {2014},
volume = {178},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2014_178_3_a0/}
}
A. V. Domrina. Integer-valued characteristics of solutions of the noncommutative. Teoretičeskaâ i matematičeskaâ fizika, Tome 178 (2014) no. 3, pp. 307-321. http://geodesic.mathdoc.fr/item/TMF_2014_178_3_a0/
[1] O. Lechtenfeld, A. D. Popov, JHEP, 11 (2001), 40, 32 pp., arXiv: hep-th/0106213 | DOI | MR
[2] A. V. Domrin, O. Lechtenfeld, S. Petersen, JHEP, 03 (2005), 045, 34 pp., arXiv: hep-th/0412001 | DOI | MR
[3] A. V. Domrin, TMF, 154:2 (2008), 220–239 | DOI | DOI | MR | Zbl
[4] A. V. Domrin, TMF, 156:3 (2008), 307–327 | DOI | DOI | MR | Zbl
[5] A. V. Domrina, Tr. MIAN, 279 (2012), 72–80 | DOI | MR | Zbl
[6] M. J. Ferreira, B. A. Simões, J. C. Wood, Math. Z., 266:4 (2010), 953–978 | DOI | MR | Zbl
[7] K. Uhlenbeck, J. Differential Geom., 30:1 (1989), 1–50 | DOI | MR | Zbl