Integer-valued characteristics of solutions of the~noncommutative
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 178 (2014) no. 3, pp. 307-321
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Any finite-energy solution of a noncommutative sigma model has three nonnegative integer-valued characteristics: the normalized energy $e(\Phi)$, canonical rank $r(\Phi)$, and minimum uniton number $u(\Phi)$. We prove that $r(\Phi)\ge u(\Phi)$ and $e(\Phi)\ge u(\Phi)(u(\Phi)+1)/2$. Given any numbers $e,r,u\in\mathbb N$ that satisfy the slightly stronger inequalities $r\ge u$ and $e\ge r+u(u-1)/2$, we construct a finite-energy solution $\Phi$ with $e(\Phi)=e$, $r(\Phi)=r$, and $u(\Phi)=u$.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
noncommutative sigma model, uniton factorization.
                    
                  
                
                
                @article{TMF_2014_178_3_a0,
     author = {A. V. Domrina},
     title = {Integer-valued characteristics of solutions of the~noncommutative},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {307--321},
     publisher = {mathdoc},
     volume = {178},
     number = {3},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2014_178_3_a0/}
}
                      
                      
                    A. V. Domrina. Integer-valued characteristics of solutions of the~noncommutative. Teoretičeskaâ i matematičeskaâ fizika, Tome 178 (2014) no. 3, pp. 307-321. http://geodesic.mathdoc.fr/item/TMF_2014_178_3_a0/
