Integer-valued characteristics of solutions of the noncommutative
Teoretičeskaâ i matematičeskaâ fizika, Tome 178 (2014) no. 3, pp. 307-321 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Any finite-energy solution of a noncommutative sigma model has three nonnegative integer-valued characteristics: the normalized energy $e(\Phi)$, canonical rank $r(\Phi)$, and minimum uniton number $u(\Phi)$. We prove that $r(\Phi)\ge u(\Phi)$ and $e(\Phi)\ge u(\Phi)(u(\Phi)+1)/2$. Given any numbers $e,r,u\in\mathbb N$ that satisfy the slightly stronger inequalities $r\ge u$ and $e\ge r+u(u-1)/2$, we construct a finite-energy solution $\Phi$ with $e(\Phi)=e$, $r(\Phi)=r$, and $u(\Phi)=u$.
Keywords: noncommutative sigma model, uniton factorization.
@article{TMF_2014_178_3_a0,
     author = {A. V. Domrina},
     title = {Integer-valued characteristics of solutions of the~noncommutative},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {307--321},
     year = {2014},
     volume = {178},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2014_178_3_a0/}
}
TY  - JOUR
AU  - A. V. Domrina
TI  - Integer-valued characteristics of solutions of the noncommutative
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2014
SP  - 307
EP  - 321
VL  - 178
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2014_178_3_a0/
LA  - ru
ID  - TMF_2014_178_3_a0
ER  - 
%0 Journal Article
%A A. V. Domrina
%T Integer-valued characteristics of solutions of the noncommutative
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2014
%P 307-321
%V 178
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2014_178_3_a0/
%G ru
%F TMF_2014_178_3_a0
A. V. Domrina. Integer-valued characteristics of solutions of the noncommutative. Teoretičeskaâ i matematičeskaâ fizika, Tome 178 (2014) no. 3, pp. 307-321. http://geodesic.mathdoc.fr/item/TMF_2014_178_3_a0/

[1] O. Lechtenfeld, A. D. Popov, JHEP, 11 (2001), 40, 32 pp., arXiv: hep-th/0106213 | DOI | MR

[2] A. V. Domrin, O. Lechtenfeld, S. Petersen, JHEP, 03 (2005), 045, 34 pp., arXiv: hep-th/0412001 | DOI | MR

[3] A. V. Domrin, TMF, 154:2 (2008), 220–239 | DOI | DOI | MR | Zbl

[4] A. V. Domrin, TMF, 156:3 (2008), 307–327 | DOI | DOI | MR | Zbl

[5] A. V. Domrina, Tr. MIAN, 279 (2012), 72–80 | DOI | MR | Zbl

[6] M. J. Ferreira, B. A. Simões, J. C. Wood, Math. Z., 266:4 (2010), 953–978 | DOI | MR | Zbl

[7] K. Uhlenbeck, J. Differential Geom., 30:1 (1989), 1–50 | DOI | MR | Zbl