Integer-valued characteristics of solutions of the~noncommutative
Teoretičeskaâ i matematičeskaâ fizika, Tome 178 (2014) no. 3, pp. 307-321

Voir la notice de l'article provenant de la source Math-Net.Ru

Any finite-energy solution of a noncommutative sigma model has three nonnegative integer-valued characteristics: the normalized energy $e(\Phi)$, canonical rank $r(\Phi)$, and minimum uniton number $u(\Phi)$. We prove that $r(\Phi)\ge u(\Phi)$ and $e(\Phi)\ge u(\Phi)(u(\Phi)+1)/2$. Given any numbers $e,r,u\in\mathbb N$ that satisfy the slightly stronger inequalities $r\ge u$ and $e\ge r+u(u-1)/2$, we construct a finite-energy solution $\Phi$ with $e(\Phi)=e$, $r(\Phi)=r$, and $u(\Phi)=u$.
Keywords: noncommutative sigma model, uniton factorization.
@article{TMF_2014_178_3_a0,
     author = {A. V. Domrina},
     title = {Integer-valued characteristics of solutions of the~noncommutative},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {307--321},
     publisher = {mathdoc},
     volume = {178},
     number = {3},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2014_178_3_a0/}
}
TY  - JOUR
AU  - A. V. Domrina
TI  - Integer-valued characteristics of solutions of the~noncommutative
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2014
SP  - 307
EP  - 321
VL  - 178
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2014_178_3_a0/
LA  - ru
ID  - TMF_2014_178_3_a0
ER  - 
%0 Journal Article
%A A. V. Domrina
%T Integer-valued characteristics of solutions of the~noncommutative
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2014
%P 307-321
%V 178
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2014_178_3_a0/
%G ru
%F TMF_2014_178_3_a0
A. V. Domrina. Integer-valued characteristics of solutions of the~noncommutative. Teoretičeskaâ i matematičeskaâ fizika, Tome 178 (2014) no. 3, pp. 307-321. http://geodesic.mathdoc.fr/item/TMF_2014_178_3_a0/