Relation between Nekrasov functions and Bohr--Sommerfeld periods in the~pure $SU(N)$ case
Teoretičeskaâ i matematičeskaâ fizika, Tome 178 (2014) no. 2, pp. 274-289
Voir la notice de l'article provenant de la source Math-Net.Ru
We investigate the duality between the Nekrasov function and the quantized Seiberg–Witten prepotential. We test the hypothesis more thoroughly than has yet been done and do not discuss the motivation and historical context of this duality. We verify the conjecture analytically up to $o(\hbar^6, \ln\Lambda)$ for arbitrary $N$ (giving explicit formulas. Moreover, we present the calculation details that are needed for verification using a computer. This allows verifying the conjecture up to $\hbar^6$ and polynomial degrees of $\Lambda$ for $N=2,3,4$. We consider only the case of the pure $SU(N)$ gauge theory.
Keywords:
gauge theory, integrable system.
@article{TMF_2014_178_2_a4,
author = {A. V. Popolitov},
title = {Relation between {Nekrasov} functions and {Bohr--Sommerfeld} periods in the~pure $SU(N)$ case},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {274--289},
publisher = {mathdoc},
volume = {178},
number = {2},
year = {2014},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2014_178_2_a4/}
}
TY - JOUR AU - A. V. Popolitov TI - Relation between Nekrasov functions and Bohr--Sommerfeld periods in the~pure $SU(N)$ case JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2014 SP - 274 EP - 289 VL - 178 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2014_178_2_a4/ LA - ru ID - TMF_2014_178_2_a4 ER -
A. V. Popolitov. Relation between Nekrasov functions and Bohr--Sommerfeld periods in the~pure $SU(N)$ case. Teoretičeskaâ i matematičeskaâ fizika, Tome 178 (2014) no. 2, pp. 274-289. http://geodesic.mathdoc.fr/item/TMF_2014_178_2_a4/